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ABSTRACT 
 

Flavones are an important class of naturally occurring heterocycles possessing various 
pharmacological activities. An in silico approach was carried out where 506 compounds containing 
flavone ring were utilised as ligand against the target aldose reductase enzyme. Aldose reductase 
is the rate-limiting enzyme in the polyol pathway, which indirectly causes diabetic complications like 
diabetic nephropathy and diabetic retinopathy. The flavone containing compounds retrieved from 
the PubChem were investigated by HTVS (high throughput virtual screening) followed by molecular 
docking using glide SP and XP docking module in Maestro of Schrodinger software. Among them, 
the best fifteen compounds were selected for further studies. The binding energy calculation was 
done using the Prime MM-GBSA module. PASS online prediction tools were used for predicting the 
antidiabetic activity of the compounds. Also, a pharmacophore model was generated for best 
interacted fifteen compounds by Phase, which can be used for evaluation of the characteristic 
features essential for this specific biological activity. The ADMET properties of the compounds were 
determined using the Qikprop module in the Schrodinger software. 
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1. INTRODUCTION 
 
An alarming increase in diabetic cases 
significantly impacted the spike of both mortality 
and morbidity rates worldwide. In 2016, WHO 
reported an enormous increase in diabetic 
patients from 108 million to 422 million in the 
past decade [1]. Thus, it is essential to develop a 
better therapeutic portofolio for diabetes 
management. Moreover, diabetic complications 
are some the worst part which has to be 
controlled. 
 

Aldose reductase plays a vital role in polyol 
pathway, as it is involved in rate limiting step [2]. 
The hexokinase pathway is used for the 
metabolism of sugar in average conditions. 
During hyperglycemia, excess glucose saturates 
the latter and activates aldose reductase leading 
to the conversion of glucose into sorbitols or 
other sugar alcohols [3]. This fact (pathways/ 
transformation) indirectly causes diabetic 
complications like diabetic nephropathy and 
diabetic retinopathy [4]. Hence, aldose reductase 
inhibitors will reduce the glucose flux and plays a 
crucial role in the management of diabetes which 
is scarcely available. Alrestatin, benurestat, 
epalrestat, fidarestat, imirestat, lidorestat, 
minalrestat, ponalrestat, ranirestat, risarestat, 
sorbinil, tolrestat, zenarestat, and zopolrestat 
were some of the aldose reductase inhibitors 
which were withdrawn during clinical trials due to 
various adverse effects [5]. Fever, nausea, 
diarrhea, increases in liver enzymes, skin rashes, 
including toxic epidermal necrolysis and Stevens-
Johnson syndrome, marked thrombocytopenia, 
lymphadenopathy, splenomegaly, and adult 
respiratory distress syndrome were some of the 
main adverse effects [6].Tolrestat was withdrawn 
because of deaths from fatal hepatic necrosis [7]. 
 
Flavones are an essential class of oxygen-
containing heterocyclic systems. The benzopyran 
ring system in the flavones occurs as secondary 
metabolites in the plant kingdom [8]. Generally, 
the term ‘Flavonoids’ are used, which possess 
C6–C3–C6 carbon framework having a 
phenylbenzopyran skeleton. Further divided into 
the flavonoids, the isoflavonoids and the 
neoflavonoids based on the position of phenyl 
ring linkage to the benzopyran moiety [9]. 
Flavones are derived from chalcones through a 
biosynthetic pathway utilising malonyl coA and p-
coumaroyl CoA [10]. 
 
Molecular docking is efficient in silico drug design 
approach to predict the possible binding site of 

the target protein for a ligand [11]. It is a virtual 
screening technique where many compounds are 
reduced to a minimum subset of compounds 
having a high binding affinity towards the 
receptors [12].The docking procedure involves 
the computational method to search for an 
appropriate ligand into the binding pockets with 
minimised energy conformation [13]. By applying 
such computational tools, we have performed the 
anticancer action of flavonoids [14], COX 
inhibitory actions of synthetic compounds [15] 
and in continuation of the in silico studies, this 
study focuses on developing flavones as leads 
as aldose reductase inhibitors. 
 

2. MATERIALS AND METHODS 
 
The flavones were retrieved from PubChem 
obeying Rule of Five properties, and 506 
compounds were chosen. The target protein 
aldose reductase was selected as 3RX2 from 
protein data bank for the specified study. 
 

2.1 Ligand Preparation 
 
The ligands were imported to LigPrep and 
preparation and minimization was done by using 
the Ligprep module [16,17].  
 

2.2 Protein Preparationand Receptor Grid 
Generation 

 
Aldose reductase preparation was realized using 
the wizard of the Schrodinger software for the 
molecular docking studies. The three-
dimensional structure of the target proteins was 
obtained from the RCBS (PDB ID:3RX2) [18]. 
Preprocess was done by assigning hydrogen 
orders. The optimization was also carried out by 
hydrogens assignment and water removal. Then 
minimization was carried out to ease the docking 
process. Grid generation is an essential feature 
in molecular docking. The active site was 
determined, and grid generation was done [19]. 
 

2.3 High Throughput Virtual Screening 
(HTVS) 

 

The 506 ligands retrieved from PubChem were 
undergone HTVSfor the enzyme aldose 
reductase, where 339 compounds interacted with 
it.HTVS reduces the number of intermediate 
conformation throughout the docking funnel and 
reduces the thoroughness of the final torsional 
refinement. Hence, HTVS aids in identifying 
specific molecules of interest from the rest of the 
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testing set molecules. However, the XP docking 
was also carried out only for the compounds 
showing the least G.score from virtual screening 
to produce a more sophisticated scoring function 
than HTVS [17,20]. 
 

2.4 Molecular Docking 
 
Molecular docking is used to determine the 
interaction between the ligand and the target 
protein.  339 compounds were performed for 
glide SP docking followed by glide XP docking. In 
the GLIDE ligand docking module, the 
corresponding generated grid of the receptor and 
ligprep files were inserted, anddocking was 
performed [17,21].The ligands which interacted 
with 3RX2 by XP docking method were listed in 
Table 1. 
 
2.5 Pharmacophore Modeling 
 
A pharmacophore model was generated for best-
interacted compounds by PHASE [17]. It can 
investigate the characteristic features essential 
for biological activity. The generated five featured 
pharmacophores in this study showed three main 
elements: hydrogen bond acceptors (HBAs), 
hydrogen bond donors (HBDs) and aromatic 
rings (AR). HBDs are shown in blue, HBAs in 
pink and ARs in orange. The three and four 
featured pharmacophore hypotheses were 
rejected due to the low value of survival score. 
They were unable to define the entire binding 
space of the selected molecules. Five featured 
pharmacophore hypotheses were established 
and subjected to rigorous scoring function 
analysis. Common pharmacophore hypotheses 
(CPH) were searched, which included at least 
five sites common-to-all molecules. Further, the 
best CPH was selected depending on the 
survival score until at least one hypothesis was 
found and scored successfully. Pharmacophore-
matching tolerance was set to 2 A

◦
. The highest 

survival score for the common pharmacophore 
hypothesis gives the best alignment of the active 
ligands to this hypothesis. This alignment 
provides fitness to all of the inhibitors [22]. 
 

2.6 Physicochemical and ADMET Studies 
 

The physicochemical and ADMET properties of 
the compounds were determined by using the 
Qikprop module in the Schrodinger software 
[17,23-24]. ADME properties prediction before 
expensive experimental processes can eliminate 
unnecessary testing on compounds that will 
probably fail in clinical trials.  

2.7 Antidiabetic Activity Prediction in 
PASS Online 

 
Prediction of antidiabetic activity for the selected 
15 flavones wasmade with the help of the 
computer program PASS (Prediction of activity 
spectra for substances) [25]. PASS is a 
computer-based program used to predict 
different pharmacological activities for other 
substances, including phytoconstituents. 
Prediction of this spectrum by PASS is based on 
structural activity relationship (SAR) analysis of 
the training set containing more than 205,000 
compounds exhibiting more than 3750 kinds of 
biological activities. The predicted activity 
spectrum of a compound is estimated as 
probable activity (Pa) and probable inactivity (Pi). 
The compounds showing more Pa value than Pi 
are the only constituents considered as possible 
for a particular pharmacological activity. 
 

3. RESULTS 
 

3.1 Virtual Screening and Molecular 
Docking 

 
Among the 506 selected compounds, the high 
throughput virtual screening produced 339 
compounds against aldose reductase enzymes. 
The docking scores and interactions are given in 
Table 2 and Fig. 1(a-b), 2(a-b). 
 
3.2 Pharmacophore Hypothesis 

Generation and Modeling 
 
The results of all featured pharmacophore 
hypotheses are presented in Table 3. The first 
hypothesis, AADRR_1, is the best hypothesis in 
this study, characterised by the highest survival 
score (4.8906), which consists of two hydrogen 
bond acceptors (A), one hydrogen bond donors 
(D), and two aromatic rings (R) (Fig. 2). The 
distances between the sites in the common 
pharmacophore hypothesis AADRR_1 are given 
in Figs. 3(a-c)  and Table 4 and 5. 
 
3.3 ADMET and Physicochemical 

Properties  
 

The selected flavonoids were screened for their 
physicochemical and ADMET properties and the 
results are portrayed in Tables 6. The predicted 
properties state that all the flavonoids, except 
naringin, showed values within the permissible 
limit, confirming that they might act as good oral 
bioavailable drugs. 
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3.4 PASS Predictions for Antidiabetic 
Activities 

 

The anticancer activity spectra of myricetin and 
quercetin were obtained by online PASS version. 

These predictions were interpreted and used in a 
flexible manner. PASS predicted probable 
activity (Pa) of myricetin and quercetin for 
different cancer targets was predicted and 
reported in the given Table 7.  

 
Table 1. List of the best ligands interacted with the protein 3RX2 

 
Sl. No. Ligand PubChem ID and name Structure 

1.  11247668 
Tanariflavanone D 
 

 
2.  14134104 

Amorilin 
 

 

3.  101670967 
2',4',5,7-Tetrahydroxy-8-[(R)-2-
isopropenyl-5-methyl-4-
hexenyl]flavanone 

 
4.  440195 

Flavanone 7-O-glucoside 
 

 
5.  42607958 

5,7-Dihydroxy-4'-methoxy-8-C-
prenyl-3'-(3-hydroxy-3-
methylbutyl)flavanone 
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6.  101367766 
4',5,7-Trihydroxy-8-[(E)-3-methyl-
4-hydroxy-2-butenyl]flavanone 
 

 
7.  480770 

Gancaonin E 
 

 
8.  101843485 

(2R)-6-(4-O-Methyl-beta-D-
glucopyranosyloxy)flavanone 
 

 
9.  10251761 

2S)-5,7,2',4'-Tetrahydroxy-8-
prenyl-5'-(1,1-
dimethylallyl)flavanone 

 
10.  42607996 

Kanzonol S 
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11.  74333987 
3,4',5,5',7-Pentahydroxy-3'-
methoxy-6-(3-methyl-2-butenyl) 
flavanone 

 
12.  480768 

Glabrol 
 

 
13.  11810419 

(+/-)-Leachianone G 

 
14.  42607867 

5-Hydroxy-7-(3-methyl-2,3-
epoxybutoxy)flavanone 
 

 
15.  11111496 

Licoleafol 
 

 
 

Table 2. Docking scores and interactions of ligands with 3RX2 
 

Sl. 
No. 

Name Docking scores Docking interactions 
XP* 
 

SP* HTVS* Hydrophobic 
interaction 

Polar 
interaction 

Hydrogen 
bonding 

1.  11247668 
Tanariflavanone 
D 
 

-14.378 -9.582 -8.026 Leu 301,  Ile 260, Leu 
300, Trp 79, Tyr 209, 
Ala 299, Cys 298, Trp 
111, Trp 219, Phe 122, 
Val 297, Trp 20, Val 47, 
Tyr 48 

Ser 302, 
Hid 110, 
Ser 159 
Asn 160 
Gln 183 

Leu 301 
Leu 300 
Gln 183 
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2.  Amorilin 
 

-14.037 -8.784 -5.679 
 

Leu 301,Leu 300, Ala 
299, Val 297, Cys 298, 
Tyr 209, Ile 260, Trp 
20, Trp 79, Tyr 40, Val 
47, Trp 111, 
Trp 219, Phe 122, Pro 
218 

Ser 302, 
Gln 183, 
Ser 159 
Asn 160, 
Ser 210, 
Hid 110 

Ser 302, 
Leu 301, 
Leu 300 
Ala 299, 
Hid 110 

3.  2',4',5,7-
Tetrahydroxy-8-
[(R)-2-
isopropenyl-5-
methyl-4-
hexenyl]flavano
ne 

-14.649 -8.959 -5.187 Pro 218, Trp 219, Leu 
301, Leu 300, Ala 299, 
Val 297, Cys 298, Trp 
79, Trp 111, Trp 20, Val 
47, Tyr 48, Phe 122 

Ser 302, 
Hid 110 

Leu 301 
Leu 300 
Ser 302 
Hid 110 

4.  Flavanone 7-O-
glucoside 
 

-13.919 -9.222 -9.241 Val 297, Cys 298, Trp 
219, Ala 299, Leu 301, 
Leu 300, Tyr 209, Trp 
111 
Phe 122, Tyr 48, Val 
47, Trp 79, Trp 20 

Ser 302, 
Hid 110, 
Ser 159, 
Asn 160, 
Gln 183 

Val 297 
Leu 300 

5.  5,7-Dihydroxy-
4'-methoxy-8-C-
prenyl-3'-(3-
hydroxy-3-
methylbutyl)flav
anone 

-13.855 -9.144 -7.222 Trp 219, Ala 299, Leu 
301, Leu 300, Cys 298, 
Val 47, Tyr 48, Trp 111, 
Tyr 209, Trp 20, Trp 79, 
Leu 124, Phe 122 

Ser 302 
Hid 110 
Asn 160 

Leu 301 
Leu 300 
Hid 110 
Tyr 48 

6.  4',5,7-
Trihydroxy-8-
[(E)-3-methyl-4-
hydroxy-2-
butenyl]flavanon
e 

-12.938 -
10.03
7 

-7.657 Ala 299, Leu 301, Leu 
300, Hid 110, Trp 20, 
Trp 219, Trp 111, Trp 
79, Trp 20, Tyr 48, Val 
47, Phe 122 

Ser 302 
Hid 110 

Leu 
301,Leu 
300, Hid 
110 
Trp 20 

7.  Gancaonin E 
 

-12.922 -7.791 -7.266 Leu 301, Leu 300, Ala 
299, Cys 298, Val 297, 
Trp 111, Tyr 209, Ile 
260, Trp 219, Pro 218 , 
Phe 122, Trp 79, Trp 
20, Tyr 48, Val 47 

Ser 302 
Hid 110 
Ser 159 
Asn 160 
Gln 183 
 

Leu 301 
Leu 300 
Ala 299 
Ser 302 
Hid 110 

8.  (2R)-6-(4-O-
Methyl-beta-D-
glucopyranosylo
xy)flavanone 
 

-12.743 -8.915 -6.525 Leu 301, Leu 300, Ala 
299, Cys 298, Val 297, 
Trp 111, Tyr 209, Ile 
260, Trp 20, Trp 79, Tyr 
48, Val 47, Phe 122, 
Trp 219 

Ser 302 
Hid 110 
Ser 159 
Asn 160 
Gln 183 
 

Ser 302 
Leu 300 
Ala 299 
 

9.  2S)-5,7,2',4'-
Tetrahydroxy-8-
prenyl-5'-(1,1-
dimethylallyl)flav
anone 
 

-12.662 -7.215 -7.246 Leu 301,  Leu 300, Ala 
299, Cys 298, Val 297, 
Trp 20, Tyr 209, Trp 79, 
Val 47, Tyr 48, Trp 111, 
Phe 122, Pro 218, Trp 
219 

Ser 302 
Ser 159 
Asn 160 
Hid 110 

Ser 302 
Leu 301 
Leu 300 
Ala 299 
Hid 110 

10.  Kanzonol S 
 

-12.487 -8.710 -6.249 Leu 301, Leu 300, Ala 
299, Cys 298, Pro 218, 
Trp 219, Trp 79, Trp 
111, Tyr 209, Trp 20, 
Tyr 48, Val 47, Phe 
121, Phe 122 

Hid 110 
Asn 160 
Ser 159 
Gln 49 
Gln183 

Cys 298 
Val 47 
Tyr 48 
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11.  3,4',5,5',7-
Pentahydroxy-
3'-methoxy-6-(3-
methyl-2-
butenyl) 
flavanone 
 

-12.435 -9.349 -9.131 Leu 301, Leu 300, Ala 
299, Cys 298, Trp 79, 
Trp 20, Tyr 209, Ile 
260, Trp 111, Val 47, 
Tyr 48, Phe 122, Trp 
219 

Ser 302 
Ser 159 
Asn 160 
Ser 210 
Gln 183 
Hid 110 

Leu 300 
Asn 160 
Gln 183 
Hid 110 

12.  Glabrol 
 

-12.419 -8.031 -6.910 Leu 301, Leu 300, Ala 
299, Cys 298, Val 297, 
Trp 20, Trp 111, Tyr 
209, Ile 260, Trp 79, 
Tyr 48, Val 47, Phe 
122, Pro 218, Trp 219 

Ser 302 
Hid 110 
Asn 160 
Ser 159 
Gln 183 
Ser 210 

Leu 300 
Hid 110 
 

13.  (+/-)-
Leachianone G 

-12.388 -9.593 -6.555 Leu 301, Leu 300, Ala 
299, Cys 298, Trp 79, 
Trp 111, Tyr 48, Val 47, 
Trp 20, Trp 219, Pro 
218, Phe 122 

Ser 302 
Hid 110 

Leu 301 
Leu 300 
Hid 110 

14.  5-Hydroxy-7-(3-
methyl-2,3-
epoxybutoxy)fla
vanone 
 

-12.306 -
10.28
9 

-7.705 Leu 301, Leu 300, Ala 
299, Cys 298, Val 297, 
Trp 219, Phe 122, Tyr 
48, Val 47, Trp 79, Trp 
111, Tyr 209, Trp 20 

Ser 302 
Hid 110 
Ser 159 
Asn 160 
Gln 183 

Leu 301 

15.  Licoleafol 
 

-12.296 -7.478 -7.011 Leu 301, Leu 300, Ala 
299, Cys 298, Val 297, 
Trp 219, Phe 122, Tyr 
48, Val 47, Trp 79, Trp 
111, Tyr 209, Trp 
20,Leu 124 

Ser 302 
Hid 110 
Asn 160 
 

Ser 302 
Leu 301 
Leu 300 
 

*XP – Extra precision docking mode 
*SP – Standard precision docking mode 

*HTVS – High throughput virtual screening docking mode 
 

Table 3. Score hypothesis 
 

Hypothesis 
ID 

Survival 
Score 

Site 
Score 

Vector 
Score 

Volume Selectivity 

AAARR_1 4.905968 0.909404 0.944806 0.758569 1.448091 
AAARR_2 4.719167 0.839363 0.925984 0.685939 1.422783 
AARR_1 4.73652 0.995995 0.977851 0.771576 1.146001 
AAADR_3 4.470966 0.766008 0.888087 0.596471 1.375302 
AAAR_1 4.51448 0.910466 0.976616 0.719978 1.062321 
AAARR_3 4.294547 0.548372 0.936455 0.491911 1.47271 
AAADR_2 4.482927 0.713844 0.823981 0.684051 1.415953 
AARR_5 4.469604 0.859936 0.93843 0.689076 1.137065 
AAADR_4 4.46516 0.641664 0.826461 0.682667 1.46927 
AAADR_5 4.454217 0.741946 0.86983 0.602395 1.394949 
AAAR_2 4.488486 0.914892 0.985656 0.717451 1.025389 
AAADR_1 4.525006 0.659007 0.871871 0.674386 1.474644 
AAADR_6 4.450901 0.780323 0.849019 0.696145 1.280316 
AARR_3 4.593529 0.910107 0.954107 0.728008 1.156209 
AAADR_7 4.328644 0.657107 0.853691 0.585581 1.387167 
AARR_2 4.653074 0.908201 0.971368 0.743644 1.184763 
AARR_4 4.504126 0.915481 0.931649 0.684828 1.12707 
AARR_6 4.457571 0.892778 0.900315 0.659987 1.159393 
AAAR_4 4.318837 0.834955 0.879186 0.691333 1.068265 
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Table 4. Distances between different sites of model AAARR_1 3RX2 
 

Sl. No. Site 1 Site 2 Distances (A
0
) 

1.  R15 A1 3.61 
2.  R15 A2 6.11 
3.  R15 R14 6.32 
4.  R15 A4 8.27 
5.  A1 A2 4.14 
6.  A1 R14 2.76 
7.  A1 A4 4.75 
8.  A2 R14 3.71 
9.  A2 A4 6.44 
10.  A4 R14 2.78 

 

Table 5. Angles between different sites of model AAARR_1 3RX2 
 

Sl. No. Site 1 Site 2 Site3 Angle (Å) 
1.  R15 A1 R14 165.1 
2.  R15 A2 R14 75.7 
3.  R15 A1 A4 163.5 
4.  R15 A2 A4 82.4 
5.  R15 A1 A2 103.9 
6.  R15 R14 A2 69.6 
7.  R15 A4 A2 47.1 
8.  R15 R14 A4 126.2 
9.  R15 A2 A1 35.0 
10.  R15 R14 A1 8.4 
11.  R15 A4 A1 7.1 
12.  R15 A4 R14 38.1 
13.  A1 R15 A2 41.1 
14.  A1 A2 R14 40.7 
15.  A1 R14 A4 117.8 
16.  A1 A4 R14 31.0 
17.  A1 A4 A2 40.0 
18.  A1 R15 A4 9.4 
19.  A1 R14 A2 78.0 
20.  A1 R15 R14 6.4 
21.  A1 A2 A4 47.5 
22.  A2 A1 R14 61.3 
23.  A2 R14 A4 164.3 
24.  A2 A1 A4 92.6 
25.  A2 R15 A4 50.5 
26.  A2 R15 R14 34.7 
27.  A2 A4 R14 9.0 
28.  R14 A2 A4 6.7 
29.  R14 R15 A4 15.8 
30.  R14 A1 A4 31.2 

 

4. DISCUSSION 
 
The selected flavones show good binding activity 
against aldose reductase enzymes. The first 15 
compounds having good docking scores were 
chosen. The docking scores of the products 
against 3RX2 were in the range of -14.37 to -
12.30 kcal/mol. Tanariflavanone D shows the 
highest XP docking score of -14.378 against 
3RX2 (aldose reductase). The interaction studies 

showed that all the 15 compounds against 3RX2 
showed hydrophobic interaction, polar interaction 
and hydrogen bonding. Tanariflavanone D 
interacted with the amino acids Leu 301, Ile 260, 
Leu 300, Trp 79,Tyr 209, Ala 299, Cys 298, Trp 
111,Trp 219, Phe 122,Val 297, Trp 20, Val 47, 
Tyr 48 by hydrophobic interactions and with Ser 
302, Hid 110, Ser 159, Asn 160, Gln 183 in polar 
interactions. All the flavone derivatives had 
hydroxy phenyl substitutions in the second 



position. In contrast, an alkyl chain substitution at 
the C6 position showed to be effective for binding 
against the aldose reductase enzyme. Thus, 
hydroxyl phenyl substitutions in the C2 position 

Fig. 1. (a) 2D and (b) 3D interactions of Tanariflavanone D

Fig. 2. (a) 2D and (b) 3D interactions of Amorilin
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contrast, an alkyl chain substitution at 
the C6 position showed to be effective for binding 
against the aldose reductase enzyme. Thus, 
hydroxyl phenyl substitutions in the C2 position 

are essential in the flavones derivatives for better 
binding affinity against the aldose reductase 
receptor proteins. 

 

 

Fig. 1. (a) 2D and (b) 3D interactions of Tanariflavanone D 
 

 
Fig. 2. (a) 2D and (b) 3D interactions of Amorilin 

 
 
 
 

; Article no.JPRI.72295 
 
 

are essential in the flavones derivatives for better 
ainst the aldose reductase 
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Table 6. Physicochemical and ADMET properties of ligands interacted with 3RX2 
 

Sl. No. Ligands Physicochemical properties ADMET properties 
Molecular 
weight 

PSA Log  P H bond 
donor 

H bond 
acceptor 

QPPCaCo Human oral 
absorption 

1.  Tanariflavanone D 440.492 139.175 3.308 4.000 6.450 32.201 73.304 
2.  Amorilin 476.611 90.586 6.491 2.000 4.000 358.829 100.00 
3.  2',4',5,7-Tetrahydroxy-8-[(R)-2-

isopropenyl-5-methyl-4-
hexenyl]flavanone 

424.493 109.8 4.151 3.000 4.750 168.246 91.089 

4.  Flavanone 7-O-glucoside 402.400 136.720 0.472 4.000 12.000 78.280 63.600 
5.  5,7-Dihydroxy-4'-methoxy-8-C-prenyl-3'-

(3-hydroxy-3-methylbutyl)flavanone 
440.535 101.746 5.255 2.000 4.750 224.002 86.823 

6.  4',5,7-Trihydroxy-8-[(E)-3-methyl-4-
hydroxy-2-butenyl]flavanone 

336.324 118.781 2.172 3.000 5.700 53.771 70.636 

7.  Gancaonin E 424.493 116.096 4.019 3.000 4.750 77.590 84.303 
8.  (2R)-6-(4-O-Methyl-beta-D-

glucopyranosyloxy)flavanone 
416.427 120.954 1.215 3.000 12.000 263.522 77.387 

9.  2S)-5,7,2',4'-Tetrahydroxy-8-prenyl-5'-
(1,1-dimethylallyl)flavanone 

424.493 112.74 3.857 3.000 4.750 113.939 86.342 

10.  Kanzonol S 414.411 155.66 2.435 3.000 6.750 18.165 63.739 
11.  3,4',5,5',7-Pentahydroxy-3'-methoxy-6-

(3-methyl-2-butenyl) flavanone 
402.400 144.682 1.908 4.000 7.200 40.391 66.869 

12.  Glabrol 392.494 75.530 5.041 2.000 4.250 567.643 92.794 
13.  (+/-)-Leachianone G 356.374 116.254 2.682 3.000 4.750 84.251 77.113 
14.  5-Hydroxy-7-(3-methyl-2,3-

epoxybutoxy)flavanone 
340.375 75.877 3.559 0.000 5.250 1413.389 100.00 

15.  Licoleafol 372.374 140.509 1.475 4.000 6.450 19.190 58.546 
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3.  2',4',5,7-Tetrahydroxy-

isopropenyl-5-methyl-4
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4.  Flavanone 7-O-glucoside
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6.  4',5,7-Trihydroxy-8-[(E)
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10.  Kanzonol S 

11.  3,4',5,5',7-Pentahydroxy
(3-methyl-2-butenyl) flavanone

12.  Glabrol 
13.  Leachianone G 
14.  5-Hydroxy-7-(3-methyl

2,3epoxybutoxy)flavanone
15.  Licoleafol 

Fig. 3. (a,b,c) Distances of 
 

5. CONCLUSION 
 
From the above, in silico studies proved to be a 
better methodology for predicting biological 
activity. In this study, 506 flavones were 
undergone virtual screening for the aldose 
reductase inhibitory action and found that 339 
flavones interacted and on further screening 
fifteen ligands interacted well. Among them 
tanariflavanone D shows the highest XP docking 
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studies proved to be a 
better methodology for predicting biological 
activity. In this study, 506 flavones were 
undergone virtual screening for the aldose 
reductase inhibitory action and found that 339 
flavones interacted and on further screening 

igands interacted well. Among them 
tanariflavanone D shows the highest XP docking 

score with aldose reductase. Thus, this study 
concludes that flavones possess antidiabetic 
action, which has to be further confirmed by 
vitro and in vivo studies. The resu
utilised for the drug development process and aid 
to develop newer medicinally important moiety. 
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