
 

_____________________________________________________________________________________________________ 
 
++ Finance and Technology Researcher; 
# Agricultural Technology Researcher; 
† Data Privacy and Blockchain Technology Researcher; 
‡ Information Technology Researcher; 
*Corresponding author: Email: samokon2000@gmail.com; 
 
Cite as: Okon, Samuel Ufom, Omobolaji Olufunmilayo Olateju, Olumide Samuel Ogungbemi, Sunday Abayomi Joseph, 
Anthony Obulor Olisa, and Oluwaseun Oladeji Olaniyi. 2024. “Incorporating Privacy by Design Principles in the Modification of 
AI Systems in Preventing Breaches across Multiple Environments, Including Public Cloud, Private Cloud, and On-Prem”. 
Journal of Engineering Research and Reports 26 (9):136-58. https://doi.org/10.9734/jerr/2024/v26i91269. 

 
 

Journal of Engineering Research and Reports 

 
Volume 26, Issue 9, Page 136-158, 2024; Article no.JERR.122737 
ISSN: 2582-2926 

 
 

 

 

Incorporating Privacy by Design 
Principles in the Modification of AI 

Systems in Preventing Breaches 
across Multiple Environments, 

Including Public Cloud, Private Cloud, 
and On-prem 

 
Samuel Ufom Okon a++*, Omobolaji Olufunmilayo Olateju b#, 
Olumide Samuel Ogungbemi c†, Sunday Abayomi Joseph d, 

Anthony Obulor Olisa e‡ and Oluwaseun Oladeji Olaniyi f‡ 
 

a FirstBank DR Congo, Gombe, Democratic Republic of the Congo. 
b University of Ibadan, Oduduwa Road, Ibadan, Oyo State, Nigeria. 

c Centennial College, 941 Progress Ave, Scarborough, ON M1G 3T8, Canada. 
d Data Privacy, Blockchain Strategy & Management, Ashland University, 401 College Avenue, 

Ashland, OH 44805, United States of America. 
e Cumberland University, 1 Cumberland Dr, Lebanon, TN 37087, United States. 

f University of the Cumberlands, 104 Maple Drive, Williamsburg, KY 40769, United States of America. 
 

Authors’ contributions 
 

This work was carried out in collaboration among all authors. All authors read and approved the final 
manuscript. 

 
Article Information 

 
DOI: https://doi.org/10.9734/jerr/2024/v26i91269  

 
Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  
peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/122737  

 
 

https://doi.org/10.9734/jerr/2024/v26i91269
https://www.sdiarticle5.com/review-history/122737


 
 
 
 

Okon et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 136-158, 2024; Article no.JERR.122737 
 
 

 
137 

 

Received: 29/06/2024 
Accepted: 31/08/2024 
Published: 03/09/2024 

 
 

ABSTRACT 
 

The rapid integration of artificial intelligence (AI) across various sectors has significantly amplified 
privacy concerns, particularly with the growing reliance on cloud environments. Existing methods 
often fall short of effectively preventing privacy breaches due to inadequate risk assessment and 
mitigation strategies. These limitations highlight the necessity for more robust solutions, indicating 
the importance of Privacy by Design (PbD) principles. This study addresses these gaps by 
proposing a comprehensive approach to incorporating PbD principles into AI systems to prevent 
breaches across public, private, and on-prem environments. The proposed work utilizes logistic 
regression analysis to identify significant predictors of privacy breaches, revealing that both the 
environment (B = -1.142, p < .001) and severity of vulnerabilities (B = 0.932, p < .01) play crucial 
roles. Additionally, a strong positive correlation (r = 0.791) between breach detection rates and PbD 
effectiveness is observed, indicating the need for enhanced detection mechanisms. To support the 
empirical findings, this study also reviews existing case studies. It conducts a thematic analysis to 
provide a deeper understanding of the practical challenges and solutions associated with PbD 
implementation, particularly in healthcare and smart city applications. These analyses serve to 
supplement the empirical evidence and demonstrate the effectiveness of PbD over other existing 
methods. The study concludes that implementing PbD principles is critical for achieving robust 
privacy protection, and the study recommends prioritizing advanced breach detection mechanisms, 
comprehensive privacy impact assessments, continuous stakeholder engagement, and investment 
in privacy-enhancing technologies to address privacy risks effectively. 
 

 
Keywords: Privacy by design; AI systems; privacy breaches; breach detection; privacy-enhancing 

technologies. 
 

1. INTRODUCTION 
 
The advent of artificial intelligence (AI) has 
ushered in a new era of technological 
advancement, revolutionizing industries and 
transforming societies. The increasing reliance 
on digital technologies and the exponential 
growth of data has created an avenue for 
significant implications for privacy, and the 
convergence of AI and data-driven systems has 
worsened privacy concerns, demanding 
innovative approaches to safeguard sensitive 
information. Cloud computing, which has 
emerged as a cornerstone of modern digital 
infrastructure, offers scalable, flexible, and cost-
effective computing resources; with this offering, 
the share of corporate data stored in the cloud 
has surged from 30% in 2015 to 60% in 2022 [1]. 
This surge in growth reflects the trust 
organizations place in cloud technologies to store 
critical information while ensuring accessibility 
securely.  
 
Despite cloud storage solutions being 
advantageous in providing solid data backup and 
recovery capabilities, which control the risk of 

data loss due to hardware failures or other 
unforeseen events, security remains a top 
concern for 83% of organizations. With 92% of 
organizations hosting some portion of their IT 
environment in the cloud, robust security 
measures are critical to protect sensitive 
information [1]. According to Netgate [1], it was 
observed that untrained workers are responsible 
for 88% of cloud breaches as their actions leave 
the organization susceptible to vulnerable attacks 
from hackers, and comprehensive training and 
awareness programs will help mitigate these 
risks. Phishing attacks account for approximately 
25% of all data breaches in the cloud 
environment, and compromised privileged 
accounts contribute to 34% of identity-related 
violations, emphasizing the need for solid access 
management practices. Despite the growing 
importance of encryption, only 21% of 
organizations have encrypted more than 60% of 
their data in the cloud, indicating substantial 
room for improvement in securing sensitive 
information. 
 
Zero-trust security models are gaining popularity 
as 80% of enterprises are considering or 
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deploying these models into their operation; 
zero-trust security models emphasize continuous 
verification and authorization, thereby improving 
these companies' security. Financial investments 
in cloud security are substantial, with audits 
starting at USD 10,000 per year, highlighting the 
commitment organizations must make to ensure 
compliance and risk mitigation. The global zero-
trust cloud security market is projected to reach 
USD 60 billion by 2027, indicating the growing 
demand for advanced security solutions [1]. 
 
According to Confessore [2], the need for more 
strict privacy measures is underlined by high-
profile data breaches such as the Cambridge 
Analytica scandal. In 2018, it was revealed that 
Cambridge Analytica had harvested the personal 
data of millions of Facebook users without their 
consent, using it for political advertising 
purposes. This incident highlighted the potential 
for misuse of personal data and led to 
widespread public outcry and regulatory 
supervision; the fallout from this scandal 
emphasized the need for solid data protection 
frameworks and the implementation of Privacy by 
Design (PbD) principles to prevent similar 
breaches. Incorporating PbD principles into AI 
systems involves several key strategies, 
including data minimization, anonymization, 
pseudonymization, and the use of privacy-
enhancing technologies; data minimization 
ensures that only necessary data is collected and 
retained, reducing the risk of exposure in the 
event of a breach [3]. Anonymization and 
pseudonymization techniques protect individual 
identities by removing or obfuscating personally 
identifiable information [4]. Privacy-enhancing 
technologies, such as homomorphic encryption 
and differential privacy, provide additional layers 
of security, enabling the analysis of data without 
compromising privacy [5]. 
 

This study aims to develop a model that will be 
instrumental in integrating risk assessment and 
privacy impact assessment into the AI 
development lifecycle, evaluating potential 
threats and vulnerabilities at each stage of 
development and implementing measures to 
address them, and also measuring the 
effectiveness of PbD implementations, key 
performance indicators and metrics to ensure 
that privacy measures achieve their intended 
outcomes. 
 

2. LITERATURE REVIEW  
 

Artificial Intelligence (AI) has significantly 
progressed since its inception, allowing usage by 

various sectors such as healthcare, finance, and 
transportation. Initially constrained by rule-based 
operations, advancements in machine learning 
and deep learning have enabled AI to perform 
complex tasks like natural language processing, 
image recognition, and predictive analytics with 
high accuracy. According to Amajuoyi et al. [6], 
the integration of AI with cloud computing has 
further expanded its usage, allowing for scalable 
and flexible deployment of AI applications. Public 
cloud services, such as those provided by 
Amazon Web Services (AWS) and Microsoft 
Azure, offer scalable resources accessible to 
multiple clients, while private clouds, though 
more costly, give greater control over data and 
security; for instance, On-premises solutions 
offer the highest level of control, requiring 
significant capital investment and maintenance 
efforts [7,8,9]. This convergence of AI and cloud 
computing introduces significant privacy 
challenges due to extensive data collection and 
processing, as AI systems require large datasets 
for training, and storing and processing this data 
in cloud environments heightens the risk of 
unauthorized access and breaches [10,11]. 
Incidents like the Cambridge Analytica scandal 
show how data breaches in AI and cloud 
environments can lead to severe consequences, 
including financial losses, reputational damage, 
and regulatory penalties, prompting increased 
scrutiny and demand for robust privacy 
measures [2,12]. 
 
In order to manage these challenges, regulatory 
frameworks such as the General Data Protection 
Regulation (GDPR) and the California Consumer 
Privacy Act (CCPA) were established. GDPR 
mandates organizations to implement measures 
to protect personal data and ensure its lawful 
processing by imposing severe penalties for non-
compliance. Similarly, the CCPA provides 
California residents with rights over their 
personal data, including knowledge of what is 
collected and the ability to request its deletion 
[13,14,15]. These regulations ensure that AI and 
cloud service providers adopt comprehensive 
privacy strategies, including data minimization 
and encryption, to comply with legal 
requirements and protect user privacy [14]. 
According to Wischmeyer [16], the ethical 
implications of AI and data usage further 
complicate the privacy issue, as AI systems often 
operate as "black boxes," where their decision-
making processes are not fully transparent, and 
this raises concerns about accountability and 
fairness, particularly in decisions impacting 
individuals, such as hiring or credit scoring. 
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Ethical considerations extend to data usage, 
where a careful balance between innovation and 
privacy must be maintained, and the misuse of 
personal data, as seen in the Cambridge 
Analytica case, highlights the potential for AI to 
infringe on individual privacy and autonomy 
[17,18]. 
 
Arif [19] proposes that addressing privacy 
challenges in AI and cloud environments requires 
a mixed approach; the implementation of Privacy 
by Design (PbD) principles requires embedding 
privacy considerations throughout the AI 
development lifecycle, and techniques such as 
data anonymization and pseudonymization are 
essential for protecting individual identities while 
enabling data utility for AI applications [20,21]. 
Additionally, privacy-enhancing technologies like 
homomorphic encryption and differential privacy 
offer further protection, allowing data to be 
analyzed without exposing sensitive information 
[22,23]. Continuous risk assessments and 
privacy impact assessments (PIAs) are vital for 
proactively identifying and mitigating     privacy 
risks in AI systems, integrating these 
assessments into the development processes 
ensures that potential vulnerabilities are 
addressed before deployment. A strong model 
framework for measuring the effectiveness of 
privacy measures is necessary to adapt to 
emerging threats and ensure that implemented 
strategies achieve their intended outcomes 
[24,25]. 
 
Privacy by design (PbD): Privacy by Design 
(PbD) argues that privacy should be an intrinsic 
component of systems and processes from the 
beginning rather than an afterthought. Pagallo 
[26] highlights that this proactive approach 
contrasts with the traditional reactive method that 
is often adopted for data protection. At its core, 
PbD promotes principles such as proactive 
measures, privacy as the default setting, and 
end-to-end security, forming a framework aimed 
at preventing data breaches and ensuring user 
trust [27,28]. In information systems and data 
management, PbD emphasizes integrating 
privacy controls at every stage of the data 
lifecycle, as embedding privacy into system 
architectures and workflows ensures that data 
collection, storage, processing, and 
dissemination adhere to strict privacy standards 
[20]. As a result, Samantha et al. [27] propose 
that effective implementation of PbD can mitigate 
risks associated with data breaches and enhance 
overall data governance; however, translating 
these principles into practical applications 

remains challenging, especially in complex and 
dynamic data environments [29,30]. 
 
Saeed et al. [31] affirm that applying PbD to AI 
systems isn’t without unique challenges and 
opportunities, and this is because AI systems 
require vast amounts of data to function 
effectively, raising concerns about data privacy 
and user consent. Studies argue that PbD in AI 
necessitates incorporating privacy safeguards 
into algorithms and models, ensuring data 
privacy throughout the AI lifecycle [31,32,33,34]. 
Techniques such as data minimization, 
anonymization, and pseudonymization are 
essential to this incorporation; data minimization 
involves collecting only the necessary data and 
retaining it only as long as required, reducing 
exposure risk, while anonymization removes 
personally identifiable information from datasets, 
making it difficult to trace data back to individual 
users, and pseudonymization replaces private 
identifiers with fictitious names or keys, adding 
an extra layer of privacy [4,35]. Privacy-
enhancing technologies (PETs) like 
homomorphic encryption and differential privacy 
are powerful tools for implementing PbD in AI 
systems. Homomorphic encryption allows 
computations on encrypted data without 
decrypting it, maintaining data confidentiality, 
while differential privacy ensures that the 
inclusion or exclusion of a single data point does 
not significantly impact the outcome of an 
analysis, thereby protecting individual privacy 
[34]. It should be noted that though these 
technologies are promising, they are still 
growing, and so their implementation in large-
scale AI systems remains a subject of active 
research [36,37]. 
 
Risk assessment and privacy impact 
assessments (PIAs) are critical components of 
the PbD framework; they offer systematic 
approaches to identify and mitigate privacy risks, 
and their integration into AI development allows 
organizations to address potential privacy issues 
before they escalate proactively [38]. These 
issues involve evaluating the threats, 
vulnerabilities, and impacts of privacy issues on 
user privacy at each stage of AI development, 
from data collection to deployment [27,39]. 
Although Raab [38] argues that PIAs should be 
mandatory for all AI projects to ensure 
compliance with privacy regulations and to build 
user trust, Georgiadis and Poels [25] suggest 
that a standardized framework for conducting 
PIAs in AI contexts is essential for consistency 
and effectiveness.  
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AI and cloud security: The widespread 
adoption of cloud computing has transformed the 
information technology space, providing 
unmatched capacity, flexibility, and cost-
efficiency. However, this shift has also introduced 
significant security challenges. Cloud 
environments are inherently complex and 
dynamic, fraught with vulnerabilities that require 
sophisticated security measures. Scholars argue 
that the shared responsibility model of cloud 
security, where providers and clients share 
duties, often results in security gaps, especially 
due to the multi-tenant nature of cloud services, 
which increases risks of data breaches and 
unauthorized access [40,41,42]. Cloud 
vulnerabilities, such as data breaches resulting 
from misconfigured settings or inadequate 
access controls, can lead to severe financial 
losses, reputational damage, and regulatory 
penalties. Aslan et al. [43] observes that human 
error, particularly in managing cloud 
configurations, is a primary contributor to these 
vulnerabilities experienced by companies, and 
most importantly, phishing attacks and 
compromised credentials are significant threats, 
as they allow attackers to access sensitive data. 
The distributed nature of cloud environments 
further complicates the prompt detection and 
response to security incidents [44], and to curb 
these risks, frameworks like ISO/IEC 27001, 
Cloud Security Alliance's (CSA), and the Cloud 
Controls Matrix (CCM) have been developed 
[45,46]. These frameworks offer guidelines for 
robust security practices, covering data 
protection, access control, and incident 
response; studies contend that adherence to 
these standards can enhance an organization’s 
security posture, although continuous updates 
are necessary to address emerging threats and 
technological advancements [47,48,49]. 
 
Rizvi [50] affirms that Artificial Intelligence (AI) 
has become a vital tool in cybersecurity due to its 
advanced capabilities for threat detection and 
prevention; AI-driven solutions utilize machine 
learning algorithms to analyze large datasets, 
identify patterns, and detect anomalies indicative 
of potential threats. This proactive approach 
allows organizations to respond to security 
incidents in real-time, reducing vulnerability [51], 
and AI’s adaptability to new threats makes it 
particularly effective against sophisticated 
attacks such as zero-day exploits [52,53]. 
Studies indicate that AI-driven threat detection 
systems will significantly improve the accuracy 
and efficiency of identifying security incidents 
[51,54,55]. These systems employ techniques 

like behavioral analysis and anomaly detection to 
recognize deviations from normal activity that 
may signal malicious behavior, and moreso, AI 
can automate aspects of threat response, such 
as isolating affected systems and initiating 
remediation, thus reducing the burden on 
security teams and enhancing response times 
[56,57]. As highlighted by Kaur et al. [58], AI is 
also crucial in vulnerability assessment, providing 
continuous evaluation of an organization’s 
security posture; traditional assessments rely on 
periodic scans, which can leave gaps in 
coverage, while AI-driven solutions offer real-
time monitoring and assessment, identifying 
vulnerabilities as they emerge and providing 
actionable insights for mitigation.  
 
Despite the numerous opportunities that AI 
provides, challenges still persist, one major 
concern is the potential for AI systems to 
produce false positives, which can overwhelm 
security teams and lead to alert fatigue. The 
effectiveness of AI-driven solutions also depends 
on the quality and diversity of the data they are 
trained on, as biases in training data can result in 
overlooking certain threats [59]. Moreover, the 
deployment of AI in cybersecurity raises ethical 
and privacy concerns, particularly regarding the 
extent to which automated systems should be 
trusted with decision-making processes [60]. 
Therefore, emerging trends highlight the 
integration of AI with other advanced 
technologies, such as blockchain and quantum 
computing, to enhance security capabilities 
[61,62,63]. Researchers are exploring blockchain 
for secure data sharing and authentication, while 
quantum computing promises new cryptographic 
techniques that could transform cloud security 
[61,62].  
 
These advancements highlight the need for 
ongoing research to address evolving security 
challenges in cloud environments, and to 
effectively help curb the complexity of 
cyberattacks, the combination of human 
expertise, solid security frameworks [64], and 
advanced technologies is required to protect 
cloud environments from the growing spectrum 
of threats [47,65], and also the incorporation of 
PbD principles into AI systems. 
 
PbD in Cloud Environments: The 
implementation of Privacy by Design (PbD) in 
cloud environments varies significantly across 
public, private, and on-premises models, each 
presenting distinct challenges and opportunities. 
According to Han et al. [64], Public clouds, 
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operated by providers such as Amazon Web 
Services (AWS) and Google Cloud, offer 
scalable resources shared among multiple 
clients; this multi-tenancy model requires strict 
data segregation measures to prevent 
unauthorized access, making PbD principles 
essential. However, these measures can 
introduce latency and complexity, potentially 
affecting performance and user experience [66]. 
Private clouds, though dedicated to a single 
organization, allow for greater control over data 
and security configurations; this environment is 
conducive to implementing comprehensive PbD 
strategies, as organizations can tailor privacy 
measures to their specific needs without 
compromising performance. However, 
Abdulsalam and Hedabou [67] states that private 
clouds are typically more expensive to maintain 
and require significant expertise to manage 
effectively, and the trade-off between enhanced 
privacy control and higher operational costs is 
also a key consideration. On-premises cloud 
environments offer the highest level of control, 
with infrastructure hosted within the 
organization’s own facilities, on-premises setup 
allows for the implementation of PbD principles 
at a granular level, from physical security 
measures to data encryption and access controls 
[68], however, on-premises solutions can be 
resource-intensive and may lack the capacity 
and flexibility offered by public and private clouds 
[69,70]. Studies indicate that while on-premises 
environments provide superior privacy protection, 
they may struggle to keep pace with rapid 
technological advancements [71,72,73]. 
 
After critical evaluation of these cloud models, 
Adeusi et al. [74] revealed that public clouds offer 
cost-efficiency and scalability but pose significant 
challenges in ensuring data privacy due to their 
shared nature, private clouds provide a middle 
ground with greater control and security but at 
higher costs, and On-premises environments, 
offering the most control, are often the most 
resource-intensive. This analysis highlights the 
importance of selecting a cloud model that aligns 
with an organization’s privacy requirements and 
operational capabilities. Case studies of 
successful PbD implementations in cloud 
environments provide valuable insights. For 
example, the deployment of differential privacy 
techniques by Apple in its iOS operating system 
illustrate how PbD can be effectively integrated 
into a public cloud setting to enhance user 
privacy while maintaining data utility. Similarly, 
Microsoft’s Azure platform has incorporated PbD 
principles through robust encryption practices 

and compliance with strict data protection 
regulations, demonstrating successful 
implementation in a private cloud environment 
[75,76]. 
 
According to Abdulsalam and Hedabou [67], 
Cloud service providers (CSPs) also play a 
crucial role in facilitating PbD through their 
privacy practices and compliance efforts, major 
CSPs like AWS, Google Cloud, and Microsoft 
Azure have developed comprehensive privacy 
frameworks to protect their user data, including 
encryption, access controls, and compliance with 
regulations such as GDPR and CCPA. Research 
indicates that CSPs’ commitment to privacy is a 
significant factor in their clients’ ability to 
implement PbD principles effectively [67,75]. 
After extensive research, Akremi and Rouached 
[77] states that CSPs’ privacy policies reveal a 
strong emphasis on compliance and 
transparency, for example, AWS’s privacy policy 
outlines its commitment to data protection, 
detailing measures such as encryption, access 
management, and incident response protocols 
[47]. Google Cloud’s privacy policy similarly 
emphasizes compliance with global data 
protection laws, providing detailed information on 
data processing practices. These policies help 
ensure compliance and build trust with users by 
demonstrating a commitment to protecting their 
privacy. 
 
However, Dias Canedo et al. [78] observe that 
there are controversies regarding the sufficiency 
and effectiveness of these privacy practices. 
Some scholars argue that while CSPs’ privacy 
policies are comprehensive, they may not fully 
address all potential privacy risks, particularly 
those arising from complex and evolving threat 
landscapes [79,80], while some studies are more 
concerned about the balance between privacy 
and usability [81,82], with some contending that 
extremely strict privacy measures can impede 
functionality and user experience [83,84]. 
Emerging trends in PbD in cloud environments 
include the integration of advanced privacy-
enhancing technologies (PETs) such as 
homomorphic encryption and federated learning. 
These technologies offer promising solutions for 
enhancing privacy without compromising data 
utility. For instance, federated learning enables 
AI models to be trained on decentralized data, 
reducing the need for data aggregation and 
enhancing privacy [85]. According to Abdulsalam 
and Hedabou [47], the successful 
implementation of PbD in cloud environments 
requires the pulling of resources from 
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technological, organizational, and legal 
dimensions, and while challenges may persist, 
the growing awareness of privacy risks and 
increasing regulatory scrutiny are driving positive 
change. By adopting a proactive, risk-based 
approach, organizations can mitigate risks, build 
trust, and achieve long-term sustainability. 
 
Privacy-Enhancing Technologies (PETs) in 
AI: Privacy-enhancing technologies (PETs) are 
increasingly vital in safeguarding data privacy 
within AI systems. Technologies such as 
homomorphic encryption, differential privacy, 
secure multi-party computation, and federated 
learning each offer distinct capabilities for 
protecting sensitive information while enabling 
data processing and analysis. Homomorphic 
encryption, for instance, allows computations on 
encrypted data without decryption, thereby 
maintaining privacy throughout the computational 
process. Differential privacy adds noise to data 
queries to prevent the identification of individual 
data points, ensuring that the inclusion or 
exclusion of a single data point does not 
significantly alter the output [86]. According to 
Mestari et al. [87], the application of PETs in AI 
systems addresses the critical need to balance 
data utility with privacy, and AI systems require 
vast amounts of data to train models effectively, 
which often involves sensitive personal 
information. PETs curb privacy risks by allowing 
data to be used without compromising individual 
privacy; for example, homomorphic encryption 
enables machine learning tasks to be performed 
on encrypted data, ensuring that raw data 
remains inaccessible even during analysis. 
Similarly, differential privacy techniques can be 
applied to AI algorithms to ensure that outputs 
are privacy-preserving, thus enhancing user trust 
and regulatory compliance [60,67]. 
 
However, Williamson and Prybutok [88] state that 
implementing PETs in AI systems is fraught with 
challenges and limitations, and one significant 
challenge is the computational overhead that is 
associated with these technologies. 
Homomorphic encryption, while highly secure, is 
computationally intensive and can significantly 
slow down processing times, making it less 
practical for real-time applications, while 
differential privacy, though effective in protecting 
individual data points, can reduce the accuracy 
of AI models due to the added noise, posing a 
trade-off between privacy and utility [89]. Secure 
multi-party computation and federated learning 
also face scalability issues, requiring significant 
coordination and communication, which can be 

cumbersome in large-scale AI deployments. 
Despite these challenges, ongoing research is 
continually enhancing the efficiency and 
applicability of PETs, and emerging PETs, such 
as hybrid approaches that combine multiple 
techniques, show promise in overcoming some 
of the limitations of existing technologies [88,89]. 
For instance, hybrid models that integrate 
homomorphic encryption with secure hardware 
solutions like trusted execution environments 
(TEEs) can provide enhanced security with 
reduced computational costs. Recent studies 
suggest that these emerging PETs could offer 
more practical and scalable solutions for privacy-
preserving AI [5,88,90]. 
 
Federated learning, another emerging PET, has 
garnered significant attention for its potential to 
revolutionize privacy-preserving AI; this 
technique involves training AI models across 
multiple decentralized devices or servers while 
keeping data localized. Rodriguez-Barroso et al. 
[89] highlight that only model updates, not raw 
data, are shared among participating nodes, 
significantly enhancing privacy. Federated 
learning is particularly relevant in sensitive 
sectors like healthcare, where patient data 
privacy is paramount. By enabling collaborative 
learning without centralizing data, federated 
learning offers a solid solution for leveraging 
large datasets while adhering to strict privacy 
regulations [89]. 
 
Risk Assessment and Privacy Impact 
Assessment (PIA): Risk Assessment and 
Privacy Impact Assessments (PIAs) are critical 
components in ensuring the privacy and security 
of data within AI systems. According to 
Georgiadis and Poels [25], PIAs involve 
systematic evaluations of how data collection, 
processing, and storage practices impact 
privacy, particularly in environments where 
sensitive personal information is at stake. PIAs 
are particularly relevant in AI systems due to the 
vast amounts of data required to train models 
effectively, and they are often used to process 
sensitive personal information, raising significant 
privacy concerns. PETs, such as homomorphic 
encryption, differential privacy, secure multi-party 
computation, and federated learning, are 
essential in addressing these concerns by 
enabling data processing without compromising 
individual privacy [89]. However, there are 
challenges with the implementation of PETs in AI 
systems, but despite these challenges, recent 
research continues to enhance the efficiency and 
applicability of PETs, and emerging hybrid 
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approaches that combine multiple PET 
techniques show promise in overcoming some 
limitations [5,94]. For instance, integrating 
homomorphic encryption with secure                        
hardware solutions like Trusted Execution 
Environments (TEEs) can enhance                        
security while reducing computational costs                  
[89].  
 
In the context of risk assessment, PIAs are 
essential for balancing privacy and utility; studies 
suggest that the successful implementation of 
PETs requires careful consideration of trade-offs, 
ensuring that protective measures do not 
undermine the effectiveness of AI models 
[91,92]. This balance is particularly challenging in 
dynamic environments where both data privacy 
and real-time performance are critical, so an 
interdisciplinary approach is needed, as                  
drawing insights from fields such as 
cryptography, data science, and regulatory 
compliance will be instrumental in developing 
effective privacy solutions that are tailored to the 
specific needs of AI systems and their application 
contexts [88]. As AI and data privacy continue to 
grow, so will the role of PETs and PIAs in 
shaping the future of this technological frontier 
[93]. 
 

3. METHODOLOGY  
 
This study utilized a mixed-method approach 
(incorporating both qualitative and quantitative 
methods) to assess the effectiveness of Privacy 
by Design (PbD) principles in AI systems. Data 
from two key sources, the OWASP Top 10 AI 
Vulnerabilities Dataset and the NIST Privacy 
Framework, were analyzed to provide detailed 
information on vulnerabilities in AI systems and 
key performance indicators relevant to PbD 
implementations. 
 
A logistic regression analysis was conducted 
using the OWASP dataset to model the 
relationship between factors such as vulnerability 
type, environment, and severity score, as well as 
the likelihood of privacy breaches in AI systems. 
The logistic regression model was expressed as 
follows: 
 

Logit(𝑝) = 𝐼𝑛 (
𝑝

1 − 𝑝 
)

=  𝛽0 + 𝛽1 ∗ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑇𝑦𝑝𝑒
+  𝛽2 ∗ 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ÷  𝛽3

∗ 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 
 

The probability P of a breach occurring was 
derived using the logit function: 

 

𝑃 =  
1

1 + 𝑒−𝐿𝑜𝑔𝑖𝑡(𝑝) 
 

 

To evaluate the effectiveness of PbD 
implementations, a Pearson correlation analysis 
was conducted using data from the NIST Privacy 
Framework,  focusing on key performance 
indicators like breach detection rate,compliance 
score,and response time. The Pearson 
correlation coefficient (r) was calculated as 
follows: 
 

𝑟 =  
𝑛 ∑ 𝑋𝑌 − (∑ 𝑋)(∑ 𝑌)

√⌊𝑛 ∑ 𝑋2 − (∑ 𝑋2)𝑛 ∑ 𝑌2 − (∑ 𝑌2)⌋
 

 

Additionally, the analysis included calculations of 
the mean and standard deviation to summarize 
the central tendency and dispersion of the key 
performance indicators across different PbD 
implementations.  
 

The mean (μ) was calculated using: 𝜇 =  
∑ 𝑋

𝑛
 

 
The standard deviation (σ) was calculated to 
measure the variability of the data: 
 

σ =  √
∑(𝑋 −  𝜇)2

𝑛
 

 
To further assess the variability in PbD 
effectiveness across different levels of breach 
detection rates,the Interquartile Range (IQR) was 
calculated as follows: 
 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 
 

The qualitative component of the analysis 
involved a comprehensive review of academic 
literature and conference papers specifically 
selected for their relevance to the implementation 
of PbD principles in AI systems.A case study 
analysis was first conducted to explore in-depth 
challenges,solutions,and outcomes associated 
with PbD across various domains,including 
healthcare,smart cities,and the Internet of Things 
applications.Subsequently,a thematic analysis 
was performed to systematically identify and 
categorize recurring themes related to privacy 
challenges and successes,reflecting critical 
issues faced during the implementation of 
PbD,the strategies applied,and the resulting 
outcomes or lessons learned. 
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Fig. 1. Summary of the Qualitative Analysis 
 

4. RESULTS AND DISCUSSION  
 

4.1 Results 
 

The logistic regression analysis was                     
conducted to predict the likelihood of privacy 
breaches in AI systems based on                       
vulnerability type, environment, and severity 
score. The results, presented in Table 1,                
reveal that both environment and severity scores 
are statistically significant predictors of  
breaches. 
 

The environment was found to be a significant 
factor (B = -1.142, p < .001), with AI systems in 
more controlled environments less likely to 
experience breaches. The severity score also 
significantly predicted breaches (B = 0.932, p < 
.01), indicating that higher severity vulnerabilities 
increase breach likelihood. Although vulnerability 
type showed a positive trend (B = 0.348, p = 
.109), it was not statistically significant in this 
analysis. These findings support the study's 
objective of identifying key factors in preventing 
privacy breaches in AI systems. 

Table 1. Logistic regression analysis predicting the likelihood of privacy breaches in AI 
systems 

 
Variable B SE B Wald z p-value 95% CI for B 

Constant -4.991 1.936 -2.578 .0099 [-8.786, -1.197] 
Vulnerability Type 0.348 0.217 1.603 .1090 [-0.078, 0.774] 
Environment -1.142 0.313 -3.653 .0003 [-1.755, -0.529] 
Severity Score 0.932 0.289 3.231 .0012 [0.367, 1.498] 
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Fig. 2. Predicted Probability of breach by severity score 
 

 
 

Fig. 3. Predicted probability of breach by environment 
 
Fig. 2 illustrates the relationship between the 
Severity Score and the predicted probability of a 
privacy breach. The regression line shows a 
positive correlation, indicating that as the severity 
of vulnerabilities increases, the likelihood of a 
breach occurring also rises. 
 
Fig. 3 displays the predicted probability of privacy 
breaches across different environments, with 
error bars indicating confidence intervals. The 
chart reveals that public cloud environments 

have a higher likelihood of breaches than private 
cloud and on-prem settings, which is consistent 
with the study's aim to assess environmental 
factors in mitigating privacy risks. The differences 
in breach probabilities highlight the importance of 
controlled environments in reducing privacy 
vulnerabilities. 
 
Implementation effectiveness measurement: 
To evaluate the effectiveness of Privacy by 
Design (PbD) implementations using key 
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performance indicators (KPIs—breach detection 
rate, compliance score, and response time) from 
the NIST Privacy Framework, a Pearson 
correlation analysis was conducted to examine 
their relationship with the overall effectiveness of 
PbD strategies in mitigating privacy risks in AI 
systems, as shown in Table 2 and Table 3. 
 
The results indicate that Breach Detection Rate 
and PbD Effectiveness are strongly positively 
correlated (r = 0.791), suggesting that systems 

with higher detection rates are associated with 
more effective PbD implementations. 
Conversely, Response Time and PbD 
Effectiveness show a moderate negative 
correlation (r = -0.370), indicating that faster 
response times are linked to higher effectiveness 
in PbD strategies. The Compliance Score, 
however, exhibited no significant correlation with 
PbD Effectiveness (r = -0.019), implying that 
compliance, while necessary, may not be a direct 
predictor of PbD success. 

 
Table 2. Summary of key performance indicators (KPIs) 

 
KPI Mean Std. 

Deviation 
Min 25th 

Percentile 
50th 
Percentile 

75th 
Percentile 

Max 

Breach Detection 
Rate 

84.11 8.92 70.17 75.80 83.92 91.91 99.61 

Compliance Score 79.91 11.72 60.28 69.68 80.22 90.65 99.43 
Response Time 
(hours) 

12.90 6.75 1.12 7.37 13.94 18.30 23.77 

PbD Effectiveness 
Score 

68.34 6.22 54.23 65.00 67.56 72.73 82.41 

 
Table 3. Correlation matrix for key performance indicators 

 
KPI Breach Detection 

Rate 
Compliance 
Score 

Response 
Time 

PbD 
Effectiveness 

Breach Detection Rate 1.000 -0.034 -0.038 0.791 
Compliance Score -0.034 1.000 -0.146 -0.019 
Response Time -0.038 -0.146 1.000 -0.370 
PbD Effectiveness 
Score 

0.791 -0.019 -0.370 1.000 

 

 
 

Fig. 4. Correlation Matrix of KPIs 
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Fig. 5. Effectiveness by breach detection rates 
 

Table 4. Case study analysis on privacy by design (PbD) in AI systems 
 
Case Study Challenges Solutions Implemented Outcomes/Lessons Learned 

PbD in 
Healthcare AI 
Systems 

Integrating PbD 
principles in AI-driven 
healthcare applications, 
particularly in 
maintaining data privacy 
across decentralized 
networks (Kaissis et al., 
[95]. 

Implemented federated 
learning techniques to 
ensure data privacy 
without compromising AI 
model accuracy. PbD 
principles were embedded 
throughout the AI system 
development process. 

Effective implementation of PbD 
led to enhanced data privacy while 
maintaining AI model performance. 
Federated learning emerged as a 
viable solution for privacy 
preservation in healthcare AI 
applications, necessitating 
continuous monitoring. 

AI in Smart 
Cities and 
Privacy 
Challenges 

Addressing privacy 
concerns in smart city 
applications where large 
volumes of personal 
data are collected and 
processed Eckhoff & 
Wagner, [96]. 

Applied anonymization 
techniques and real-time 
data encryption to protect 
personal data. Engaged 
stakeholders to ensure 
privacy considerations 
were integrated into every 
aspect of AI deployment. 

Anonymization and encryption 
techniques helped mitigate privacy 
risks, though challenges remained 
in balancing data utility with 
privacy. Stakeholder engagement 
was critical for addressing privacy 
concerns and building public trust 
in smart city initiatives. 

Privacy Impact 
Assessment in 
AI 
Development 

Conducting effective 
Privacy Impact 
Assessments (PIAs) in 
AI systems, particularly 
in understanding and 
mitigating ethical 
implications Raab, [38]; 
Wairimu et al., [97]. 

Developed a 
comprehensive PIA 
framework that included 
ethical considerations, 
stakeholder input, and 
continuous feedback 
loops. This framework 
was integrated into the AI 
system lifecycle. 

The PIA framework offered a 
structured approach to identifying 
and mitigating privacy risks early in 
the AI development process. 
Ethical considerations and 
stakeholder input enhanced the 
robustness and acceptability of AI 
systems. 

PbD in IoT and 
Healthcare 
Applications 

Ensuring transparency 
and explainability of AI 
systems in IoT-based 
healthcare applications, 
where privacy risks are 
amplified by 
interconnected devices 
Alkhariji et al., [98]. 

Synthesized existing PbD 
knowledge into a 
framework prioritizing 
transparency and 
explainability. This 
framework was applied to 
design AI systems that 
met privacy requirements 
in healthcare. 

The framework successfully guided 
the design of transparent and 
explainable AI systems, improving 
user trust and compliance with 
privacy regulations. However, 
challenges persisted in fully 
automating the PbD process in 
complex IoT environments. 

 



 
 
 
 

Okon et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 136-158, 2024; Article no.JERR.122737 
 
 

 
148 

 

Table 5. Thematic analysis of privacy by design (PbD) in AI systems 
 
Theme Challenges Successes 

Integration of PbD 
in AI Development 

Difficulty in seamlessly integrating PbD 
principles into AI systems due to 
complexities like large datasets and 
complex algorithms Danezis et al., [99]. 

Effective integration using federated learning 
and privacy-preserving techniques, 
particularly in healthcare and smart cities 
Kaissis et al., [94]; Alkhariji et al., [98]. 

Ethical and 
Privacy Impact 
Assessments 

Conducting effective Privacy Impact 
Assessments (PIAs) in AI systems, 
especially regarding ethical implications 
and data usage Raab, [38]; Wairimu et 
al.,[97]. 

Development of comprehensive PIA 
frameworks with continuous feedback loops 
and stakeholder engagement to proactively 
manage privacy risks Raab, [38]; Wairimu et 
al., [97]. 

Transparency and 
Explainability in AI 

Ensuring transparency and 
explainability in AI systems, particularly 
in IoT and smart city applications 
Alkhariji et al., [98]. 

The successful design of transparent and 
explainable AI systems through structured 
PbD frameworks improves user trust and 
compliance Alkhariji et al., [98]. 

Stakeholder 
Engagement and 
Public Trust 

Building and maintaining public trust 
through effective stakeholder 
engagement, especially in privacy-
sensitive applications Eckhoff & 
Wagner, [96]; Mehr, [100]. 

Early and ongoing stakeholder engagement 
leads to AI systems that meet user needs 
and expectations and build public trust, 
Eckhoff & Wagner, [96]. 

 
The heatmap in Fig. 4 shows the Pearson 
correlation coefficients between key performance 
indicators (KPIs) and PbD effectiveness. The 
strong positive correlation between Breach 
Detection Rate and PbD Effectiveness (r = 
0.791) is highlighted, while the negative 
correlation between Response Time and PbD 
Effectiveness (r = -0.370) indicates that faster 
response times are associated with higher PbD 
effectiveness. 
 
Fig. 5 presents a box plot showing the 
distribution of PbD effectiveness scores across 
different levels of breach detection rates. The 
plot demonstrates that higher breach detection 
rates are associated with higher median PbD 
effectiveness, emphasizing the importance of 
effective breach detection in enhancing privacy 
outcomes. 
 
Case study analysis: A thorough analysis of 
Privacy by Design (PbD) implementations in AI 
systems was conducted by systematically 
selecting and examining targeted case studies 
from relevant literature. These case studies 
specifically illustrate the critical challenges faced, 
the solutions implemented, and the                        
outcomes achieved in the practical              
integration of PbD principles within AI systems 
(see Table 4). 
 
The analysis demonstrates that integrating 
Privacy by Design principles into AI systems 
requires addressing complex challenges, 
implementing robust solutions, and deriving 

valuable lessons from real-world applications. 
The case studies the importance of federated 
learning, anonymization, encryption, stakeholder 
engagement, and structured Privacy Impact 
Assessments in mitigating privacy risks within AI 
systems. These outcomes highlight the need for 
continuous monitoring, ethical considerations, 
and transparency to ensure the effectiveness of 
PbD implementations in diverse AI-driven 
environments. 
 
Thematic analysis:  To systematically identify 
and categorize recurring challenges and 
successes from relevant literature, a thematic 
analysis of Privacy by Design (PbD) 
implementations in AI systems was conducted 
(see Table 5). 
 
The thematic analysis presented shows the 
critical challenges and successful strategies 
involved in implementing PbD in AI systems. The 
findings reveal that while integrating PbD 
principles into AI development poses significant 
difficulties, particularly in managing complex data 
and algorithms Danezis et al., [99], effective 
solutions such as federated learning have proven 
successful Kaissis et al., [95]; Alkhariji et al., [98]. 
Additionally, the importance of ethical and 
privacy impact assessments, transparency, and 
stakeholder engagement is highlighted by Raab 
[38], Wairimu et al. [97], Eckhoff & Wagner [96], 
Mehr [100], with comprehensive frameworks and 
proactive engagement strategies emerging as 
key factors in building public trust and ensuring 
the success of AI systems. 
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Fig. 6. Effectiveness of solutions in addressing PbD challenges 
 

 
 

Fig. 7. Effectiveness of different solutions in addressing the key challenges of Privacy by 
Design (PbD) in AI systems 
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Fig. 6 illustrates the effectiveness of various 
solutions in addressing key challenges 
associated with Privacy by Design (PbD) in AI 
systems. Federated Learning shows high 
effectiveness in managing complex AI systems 
but is less impactful in addressing other 
challenges. Comprehensive PIA Frameworks are 
particularly effective in handling Privacy Impact 
Assessments and ensuring transparency but are 
less effective in dealing with complex AI systems. 
Structured PbD Frameworks demonstrate strong 
performance across multiple challenges, 
especially in transparency and regulatory 
compliance. Stakeholder Engagement is most 
effective in building trust and ensuring 
transparency but is less effective in addressing 
complex AI system challenges. 
 
Fig. 7 provides a visual representation of the 
effectiveness of various solutions in addressing 
key challenges associated with Privacy by 
Design (PbD) in AI systems. Federated Learning 
demonstrates high effectiveness in managing 
complex AI systems, while Comprehensive PIA 
Frameworks are particularly effective in 
addressing Privacy Impact Assessments and 
transparency. Structured PbD Frameworks show 
strong effectiveness across multiple challenges, 
including transparency and regulatory 
compliance. Stakeholder Engagement is most 
effective in building trust and ensuring 
transparency, though less so in addressing the 
complexities of AI systems. 
 

4.2 Discussion 
 
The findings of this study provide significant 
insights into the effectiveness of incorporating 
Privacy by Design (PbD) principles within AI 
systems across various environments, aligning 
with the study’s aim of developing a model for 
integrating risk assessment and privacy impact 
assessment into the AI development lifecycle. 
The logistic regression analysis reveals that the 
environment in which AI systems operate is a 
crucial determinant of privacy breaches, with 
public cloud environments exhibiting a higher 
likelihood of breaches compared to private cloud 
and on-premises settings. This result is 
consistent with the literature, which highlights the 
inherent vulnerabilities of public cloud 
environments due to their multi-tenant nature and 
the complexities associated with maintaining 
stringent privacy controls in such dynamic 
settings [43,67]. The statistical significance of the 
severity score as a predictor of breaches further 
explains the importance of addressing high-

severity vulnerabilities, corroborating the view 
that robust privacy measures are essential in 
environments where the severity of potential 
threats is high [50,58]. 
 
Moreover, the positive correlation between 
breach detection rate and PbD effectiveness (r = 
0.791) suggests that systems with more effective 
detection mechanisms are better equipped to 
mitigate privacy risks, supporting the argument 
that continuous monitoring and proactive threat 
detection are critical components of a successful 
PbD implementation [94,96]. Conversely, the 
negative correlation between response time and 
PbD effectiveness (r = -0.370) indicates that 
faster response times are associated with higher 
PbD effectiveness, highlighting the necessity of 
prompt action in mitigating the impact of privacy 
breaches. This finding aligns with the broader 
literature on AI and cloud security, which 
emphasizes the role of AI-driven solutions in 
reducing vulnerability and enhancing response 
times [50,58]. 
 
However, the lack of a significant correlation 
between compliance scores and PbD 
effectiveness (r = -0.019) challenges the 
assumption that regulatory compliance alone is 
sufficient to ensure effective privacy protection. 
While compliance with frameworks such as 
GDPR and CCPA is undoubtedly important, this 
study suggests that compliance measures must 
be complemented by robust, context-specific 
privacy strategies that address the unique 
challenges posed by AI systems [16,19]. The 
case study analysis further reinforces this point 
by demonstrating the effectiveness of federated 
learning, anonymization, and encryption 
techniques in mitigating privacy risks in specific 
contexts, such as healthcare AI systems and 
smart city applications. These real-world 
examples illustrate how tailored PbD 
implementations can enhance privacy outcomes, 
even in environments where traditional 
compliance measures might fall short [94,97]. 
 
In terms of practical applications, the thematic 
analysis reveals recurring challenges and 
successful strategies associated with PbD 
implementation. The difficulty of integrating PbD 
principles into complex AI systems, particularly 
those involving large datasets and sophisticated 
algorithms, echoes the challenges highlighted in 
the literature [98]. Nevertheless, the successful 
use of federated learning and other privacy-
preserving techniques in specific domains 
demonstrates that these challenges can be 
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overcome with the right approach [94,97]. 
Similarly, the importance of comprehensive 
privacy impact assessments and ethical 
considerations in AI development is reaffirmed, 
aligning with existing research that advocates for 
a proactive, risk-based approach to privacy 
management [38,100]. 
 
The study's results also emphasize the critical 
role of stakeholder engagement and 
transparency in building public trust, particularly 
in privacy-sensitive applications such as 
healthcare and smart cities. This finding supports 
the literature's assertion that effective 
communication and stakeholder involvement are 
key to the successful implementation of PbD 
principles, as they help address public concerns 
and foster trust in AI systems [95,99]. By 
comparing the effectiveness of various solutions, 
including federated learning, structured PbD 
frameworks, and stakeholder engagement 
strategies, this study provides valuable insights 
into the practicalities of implementing PbD in 
diverse AI-driven environments. These insights 
highlight the need for continuous monitoring, 
ongoing research, and adaptive strategies to 
ensure that privacy measures remain effective in 
the face of evolving technological and regulatory 
challenges [67,89]. 
 

5. CONCLUSION AND RECOMMENDA-
TION 

 
This study demonstrates that the effective 
incorporation of Privacy by Design (PbD) 
principles in AI systems is critical for mitigating 
privacy breaches across various environments, 
particularly in public cloud settings where the risk 
is heightened. The logistic regression analysis 
confirms that environmental factors and the 
severity of vulnerabilities are significant 
predictors of privacy breaches, highlighting the 
need for targeted privacy strategies. The positive 
correlation between breach detection rates and 
PbD effectiveness shows the importance of 
robust detection mechanisms, while the findings 
also suggest that compliance alone is insufficient 
for achieving comprehensive privacy protection. 
The case studies and thematic analysis further 
illustrate the value of tailored PbD 
implementations, especially in domains like 
healthcare and smart cities, where privacy risks 
are pronounced. 
 
The following specific recommendations are 
proposed to enhance the implementation of PbD 
principles in AI systems: 

1. Prioritize the development and integration 
of advanced breach detection 
mechanisms, particularly in public cloud 
environments, to ensure timely 
identification and mitigation of privacy 
risks. 

2. Implement a comprehensive and context-
specific privacy impact assessment 
framework that goes beyond regulatory 
compliance to address the unique 
challenges posed by AI systems and 
environments. 

3. Foster continuous stakeholder 
engagement throughout the AI 
development lifecycle, with a focus on 
transparency and ethical considerations, to 
build public trust and enhance the 
acceptability of AI systems. 

4. Invest in research and development of 
privacy-enhancing technologies, such as 
federated learning and homomorphic 
encryption, to ensure that AI systems can 
effectively balance data utility with robust 
privacy protection. 
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