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Abstract 
Building an automatic seizure onset prediction model based on multi-channel 
electroencephalography (EEG) signals has been a hot topic in computer 
science and neuroscience field for a long time. In this research, we collect 
EEG data from different epilepsy patients and EEG devices and reconstruct 
and combine the EEG signals using an innovative electric field encephalo-
graphy (EFEG) method, which establishes a virtual electric field vector, 
enabling extraction of electric field components and increasing detection ac-
curacy compared to the conventional method. We extract a number of im-
portant features from the reconstructed signals and pass them through an 
ensemble model based on support vector machine (SVM), Random Forest 
(RF), and deep neural network (DNN) classifiers. By applying this EFEG 
channel combination method, we can achieve the highest detection accuracy 
at 87% which is 6% to 17% higher than the conventional channel averaging 
combination method. Meanwhile, to reduce the potential overfitting problem 
caused by DNN models on a small dataset and limited training patient, we 
ensemble the DNN model with two “weaker” classifiers to ensure the best 
performance in model transferring for different patients. Based on these me-
thods, we can achieve the highest detection accuracy at 82% on a new patient 
using a different EEG device. Thus, we believe our method has good potential 
to be applied on different commercial and clinical devices. 
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1. Introduction 
1.1. Background 

Epilepsy is a neurological disease that affects around 50 million people around 
the world. It is characterized by recurrent and chronic oftentimes unprovoked 
epileptic seizures. Other symptoms of epilepsy include loss of consciousness, an-
xiety, depression, and impaired physical movements. Epilepsy is the most com-
mon neurological disease that affects people of all ages. In low-income countries, 
where timely and effective treatments are almost inaccessible, it has become even 
more dangerous. Sporadic seizures also prevent patients from performing nor-
mal social functions, and therefore, they can be targets of discrimination and 
stigma [1]. Moreover, reports also showed that epilepsy can cause an annual 
economic burden of €15.5 billion in Europe, and $12.5 billion in the United 
States [2].  

About 70 percent of epilepsy patients are treatable with antiseizure medication 
[1]. Other patients would need to have brain surgery to remove the epileptogenic 
zone in which area, brain tissue lesion contributes to the seizure onset [3]. By 
correctly identifying and removing the pathological zone, physicians can prevent 
further seizure onsets in epilepsy patients. However, this process is not riskless, 
because identification of the epileptogenic zone is not always accurate. In addi-
tion, among the successful cases, only 65 percent of the patients were completely 
seizure-free according to a study conducted in a pool of 2250 patients in total 
after the surgery [4].  

In recent years, the Brain-Machine Interface (BMI) has caught people’s atten-
tion as a potential solution to seizure onset forecast and provide appropriate 
measures in due time. BMI is a device that can collect neuronal signals from the 
brain and send them to an external processor for further signal processing and 
peripheral machine control. Electroencephalography (EEG) is a widely used test 
with BMI for measuring brain electric activity with either implanted or on the 
scalp electrodes. EEG can only be used to detect superficial cortex activity and its 
spatial resolution is limited by its electrode density. However, its low cost, high 
temporal resolution, and relative motion tolerance made it a fit tool for long 
term brain pathology monitoring. Some commercially available lightweight 
wearable EEG devices, such as the Emotiv, Neurosky, IMEC, etc. [5], can be used 
for single brain feature detection. Comparing with these on-scalp electrode EEG 
devices, intracranial EEG (iEEG) obtains a signal from implanted invasive elec-
trodes deep on the cortex, which can increase the signal-to-noise ratio (SNR).  

EEG devices collect neuronal signals from electrodes and translate them into a 
graph that shows the electrical intensity of all neurons firing in the correspond-
ing electrode placing area. In neural engineering, EEG signals are typically cate-
gorized into different bands based on signal frequency, shown in Table 1.  

By analyzing patients’ EEG signal time-domain pattern, frequency domain 
features, and their corresponding pathological manifestation, clinicians can 
make identification and diagnosis. Using the EEG signal to identify different 
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brain waves is crucial in the detection and prediction of epilepsy, as they are of-
tentimes correlated. A seizure can be further categorized into four categories 
based on occurrence time, shown in Table 2.  

When predicting epileptic seizures, the pre-ictal period has to be identified, 
after which the ictal period ensues. Over the years, no clear biomarkers for the 
pre-ictal period have been identified [6]. However, with the help of machine 
learning and neural network algorithms, the potential characteristics of the 
pre-ictal period can be discovered and used as an effective prediction method.  

With the help of a machine learning algorithm, BMI can be used to predict 
seizures before its onset, and enable countermeasures, such as negating the dis-
orderly epileptic brain activity by sending counter signals using a closed-loop 
Responsive Neurostimulator (RNS), whose electrodes are implanted in a burr 
hole in the skull [7].  

1.2. Related Work 

Developing an effective seizure prediction and suppression method has been one 
of the high-profile research topics for epilepsy clinicians and researchers since 
the last century. In the 1970s, an “epileptic seizure warning system” has been de-
signed, in which the device takes electrical signals recorded from electrodes lo-
cated on the scalp, and runs pattern recognition over the EEG signals [8]. This 
seizure detection device can be carried in pockets and can check specific patterns 
that are related to reseizure activities. It would warn its user if the number of 
pre-seizure decisions exceeds a certain threshold within a predefined epoch.  
 
Table 1. EEG bands. 

Band Frequency (Hz) 

Delta waves 0.5 to 4 

Theta waves 4 to 8 

Alpha waves 8 to 12 

Beta waves 12 to 30 

Low-gamma 30 to 50 

Gamma 50 to 80 

High-gamma 80 to 150 

 
Table 2. Serzure period categories. 

Category Occurrence 

Ictal period The period of seizure onset 

Pre-ictal period The period readily before the ictal period 

Post-ictal period The period readily after the ictal period 

Interictal period The rest of the EEG between two ictal period 
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Patients can then take medications or find a quiet place before the seizure starts. 
Another invention took the detection to another degree by adding a counteract-
ing electrical energy stimulator to suppress the seizure [9]. By implanting elec-
trodes on the critical epileptic cortex, this device can automatically detect aber-
rant activity in the brain and send signals to negate the imminent seizure. How-
ever, both devices suffer from low detection accuracy and a high false alarm rate 
problem. The deficient inaccuracy problem was alleviated by the enhancement 
of computer processing power in the 21st century. Researchers have eyed the 
pre-ictal period, the detection of which can lead to a better success rate in iden-
tifying when the seizure starts. In 2007, the first international contest of seizure 
prediction was held by the International Workshops on Seizure Prediction 
(IWSP), in which the competitors tested their algorithms against a set of data 
from actual epilepsy patients for accuracy. However, none of the competitors 
achieved a prediction performance of above 50% [6]. According to Epilepsy 
Ecosystem, a website dedicated to holding competitions for evaluating different 
epilepsy algorithms, the top score in a recent competition scored an overall AUC 
of 86.674%, which is a significant improvement on the pure guesswork ten years 
ago, but still not accurate enough to ultimately solve the issue [10]. For most of 
the recent results, researchers employ the popular Artificial Neural Network 
(ANN) method, inspired by human brain neurons. The input values are passed 
through individual “perceptions” in the middle “hidden layers” and onto the fi-
nal “outer layer,” which generates a result. The state-of-the-art Deep Learning 
algorithm was developed from ANN methods and has both increased accuracy 
and processing speed. Its advantage in modeling and classification will become 
even greater when given a large training dataset. In deep learning, more data can 
almost guarantee a better performance, which is not always the case in tradition-
al machine learning. In 2020, a group of researchers combined deep learning 
with image processing by transforming EEG signals into RGB images, whose 
features are extracted and processed through layers of ANN classifiers, as well as 
three CNN layers, which is ideal for image processing [11]. They even achieved a 
stunning AUC of 92% with the CNN model, which proved their algorithm effec-
tive.  

Despite the progress in the seizure detection field using different machine 
learning algorithms, there are still some obvious limitations to all current epi-
lepsy detection methods. First, the capacity of seizure prediction model training 
and validation dataset is small. Comparing with the billion level of the image 
training dataset, due to privacy, medical confidentiality and relative high collec-
tion cost reasons, the EEG dataset can hardly be shared between research cen-
ters, not to speak of open to the public. This is why even though many research-
ers have presented a very good prediction accuracy result in their publications, 
there is still no universal effective solution for clinical seizure treatment devices. 
Second, devices used in different regions have large variations. The datasets 
which are used to train a seizure prediction model are mostly collected from a 
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specific type of EEG or iEEG device. However, RNS devices have different 
channel numbers. sample rate and SNR which makes it very hard to migrate a 
good prediction model to other types of devices. Third, prediction models can be 
either hard to execute on a small low-power EEG apparatus processor or un-
suitable for clinical or domestic applications due to the low sensitivity and speci-
ficity [12]. Traditional machine learning models, like support vector machine 
(SVM), K-nearest neighbor (KNN), and Random Forest, etc., suffer from a low-
er-than ideal AUC prediction score. They also have a high requirement for se-
lecting proper signal features for the classifier based on signal quality and device 
placement. Since they have difficulty in processing raw data from nature direct-
ly, an effective feature extractor is necessary to transform the raw data into a 
suitable feature vector [13]. Furthermore, deep neural networks, the current 
most popular machine learning model, also has its own limitation on this appli-
cation. Like what we have mentioned, epileptic patient data is limited to a few 
ones publicized by hospitals and research facilities, DNN’s advantage in 
processing large quantities of data effectively is diminished. A Limited dataset 
can bring out an inevitable problem, the model is tended to be overfitting on 
specific patients and thus, loses its generality. This issue doesn’t only happen in 
epilepsy detection, but also in other applications with small datasets. Since brain 
structures of different people are oftentimes disparate, a DNN model being 
trained on a small dataset can hardly be used on other epilepsy patients with the 
same performance [14].  

Thus, in this paper, we are going to present a signal reconstruction method 
and a corresponding seizure detection model which can be used as a trans-
fer-learning model between different patients with different EEG/iEEG devices. 
As a proof of concept method and with a limited capacity dataset, we understand 
the classification model can’t perform as good as other neural network-based 
models. However, we believe, this method has a big advantage and potential to 
be applied to real clinical or commercial devices.  

1.3. Our Contribution 

1) Inspired by the work of Dr. Srinivas Sridhar and Dr. Yury Petrov [15] who 
introduced the concept of Electrical Field Encephalography (EFEG), we employ 
the same method to our dataset in the process of signal reconstruction. EFEG is 
a novel modality that combines traditional EEG and electrical fields of each in-
dividual electrodes on the scalp to reconstruct a local directional electric field 
vector. Electrical potential energy is measured at each electrode like normal 
EEG, but instead of averaging the potential energy, EFEG takes a central elec-
trode and builds a coordinate system around it. EFEG utilizes a local reference 
that accounts for the individual electrodes and their relative positions, as op-
posed to traditional EEG which uses a global reference [16]. By applying this 
EFEG method which is similar to solving a linear algebraic overdetermined ma-
trix problem, we can subtract the common information from the sensing region 
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and dramatically reduce computational cost. However, the EEG dataset, which 
we used in this work, doesn’t contain information about electrodeposition. Since 
this issue can also happen in real practice, we developed virtual coordinates 
based EFEG algorithm which assigns each channel a virtual coordinate based on 
its signal feature ranking. By doing this, only the high relevance channels will be 
sent to the electric field signal reconstruction process. This process can reduce 
the interference from the less seizure-event relevant channels and make the me-
thod applicable for devices with different electrode numbers.  

2) In this work, we proposed a seizure detection model based on DNN, SVM, 
and random forest ensembling. In order to mitigate the generalization gap and 
reduce classification model specificity, we performed ensemble learning on 
DNN, SVM, and random forest to build a new classification model. To reduce 
the risk of model overfitting on a small dataset, we combined the “strong clas-
sifier” based on neural network and signal feature-based “weak classifier” using 
reconstructed EFEG signal as data input. Time-domain and frequency domain 
features are subtracted from EFEG signal and used for SVM and random forest 
training. Empirical Mode Decomposition (EMD) and Wavelet Transform 
(WVT) are also performed on EFEG signal and their outputs are used for DNN 
training. In the analysis section, we also showed a comparison between the en-
semble model and individual models. Cross-validation is also performed on the 
training dataset. Different EEG channel number patients’ datasets are used for 
model testing.  

3) In this paper, we also proved model transferring between different patients 
and devices. A major obstacle in epilepsy prediction is the difficulty in model 
migration, applying the same detection model on different patients, due to in-
sufficient training data and the difference in the neurological mechanisms be-
tween different people. EEG recording devices, similarly, come in many shapes 
and forms, forcing an overall model to account for devices with varying amounts 
of channel inputs, which usually ranges from 16 to 256 channels. Thus, in our 
work, we first demonstrate that with our signal combination method, devices 
with different channel numbers can be used to train the same classifier. Second, 
we test our model with other patients who are not included in the training data-
set and using different channel number devices. This can be a good concept 
proof of our transfer learning method. It has good potential to be used in clinical 
practice and its performance can increase even using data from different sources.  

2. Methods  
2.1. Detection Algorithm  

The foundation of our detection system is based on the EFEG signal reconstruc-
tion method, which is introduced in 1.3.1. What’s more, we also use channel 
importance ranking, extraction of appropriate features, and the final model en-
sembling based on the predictions of three different machine learning models. 
As shown in Figure 1, our automatic seizure detection algorithm is divided into  
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Figure 1. EFEG-based automated seizure detection algorithm flow chart. 

 
the signal combination calibration phase and model training phase. In the first 
phase, features extracted from the input EEG signals are used to calculate chan-
nel importance, in preparation of the EFEG method. Different from the original 
EFEG method, since we can’t always get the distribution of the accurate elec-
trodes, we build a virtual coordinate EFEG combination based on the feature 
ranking. The best channels are then selected and ranked by their relative impor-
tance to the Random Forrest classifier in the calibration phase. Following this 
phase is the Model Training phase, where the previously ranked channels get 
reconstructed through EFEG method. The same features are then extracted from 
the reconstructed signals, trained with three different classifiers, and ensembled 
to get the final result. 

2.2. Signal Processing 
2.2.1. Classical Signal Features in Seizure Detection 
First, we use filters to remove high-frequency brain waves and low-frequency 
brain waves, and keep the brain wave signals we need as much as possible, and 
also make the data image smoother. 

After necessary pre-steps are taken to eliminate irrelevant noises, 36 features 
are extracted from the pre-processed data.  

As shown in Table 3, the 36 features are categorized into 3 feature types. 
Time-domain, frequency domain, and statistic features are regular signal analy-
sis features extracted on their respective domain field; the WVT-based and 
EMD-based features are not extracted from the reconstructed signals, but rather 
from signals further processed by WVT and EMD methods, which will be ex-
plained in details in later paragraphs.  
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Table 3. Set of investigated features. 

Feature Type Feature Name 

Time-Domain, 
Frequency-Domain, 

and Statistic 

Hjorth activity 

Hjorth mobility 

PSD of theta band 

Mean PSD of delta band 

Mean PSD of theta band 

Mean PSD of alpha band 

Mean PSD of beta band 

Mean PSD of low-gamma band 

Mean amplitude 

Signal amplitude variation 

Kurtosis 

Skewness 

WVT-based features 
Mean power of each coefficient array 

Entropy of each wavelet coefficient array 

EMD-based features 

Entropy of each IMF 

Mean envelope amplitude of each IMF 

Variation of instantaneous frequency’s 

first derivative 

 
Hjorth activity and Hjorth mobility are Hjorth parameters, time-domain 

based statistical properties widely used in EEG data analysis. Hjorth activity is a 
measurement of the signal’s power in a time range, calculated by taking the va-
riance of the signal function. Hjorth mobility measures the mean frequency or 
the proportion of the standard deviation of the signal’s power. The subsequent 
five features are Power Spectral Density (PSD) of different brainwave frequen-
cies. It is a measurement of a signal’s power content on the frequency-domain. 
Compared to the similar auto power whose amplitudes increase as the frequency 
resolution gets lower and finer, the PSD solves the difference in amplitudes by 
dividing each measurement by its frequency. This way, the results of PSD look 
consistent as the frequency resolution changes. It generates a power spectrum 
for each data range and is averaged to take the mean value. The five frequencies 
of brainwave used are delta, theta, alpha, beta, and lower-gamma band, each 
representing different phases of human activity, as shown in Table 1. The next 
two features work on data amplitude on the time-domain, with the former cal-
culating its mean value and the latter measuring its variation. The last two regu-
lar features, kurtosis and skewness, are common statistical analysis parameters. 
Kurtosis represents the sharpness of data, and how much it deviates from the 
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Gaussian distribution, and skewness, measures the symmetry or distribution of 
data points. The WVT based features deal with the mean power and entropy of 
each coefficient array, and the EMD-based features deal with the entropy, mean 
envelope amplitude and frequency variation of each IMF, as will be explained in 
the following paragraphs. 

2.2.2. Wavelet Transform 
Wavelet Transform is a signal analysis technique that can decompose signals in 
its frequency domain, while maintaining valuable time domain information. De-
signed in the 1980s, it was developed as a signal processing technique that offers 
a solution to the lack of time-domain information in Fourier Transform. Some 
benefits of WVT include its ability to analyze rapidly changing edges of 
non-linear, non-stationary signals and its denoising effects. The transformation 
is expressed through this equation:  

( ) ( )1, dt bX a b x t t
aa

∞

−∞

− = Ψ 
 ∫                   (1) 

In the equation, a and b are two parameters that change as the transformation 
proceeds—scale and translation factors. Ψ  represents the “mother wavelet,” a 
finite wave with an overall amplitude of zero. Scale controls the size of the wave-
let, and translation controls its position along with the analyzed signal ( )x t . As 
WVT algorithm is in progress, values of a and b automatically change to fit the 
signal being analyzed, and the equation computes the correlation coefficients of 
each small shift in b. This procedure breaks down the signal into a number of 
smaller “coefficient arrays.” This multilevel decomposition can be realized using 
the “wavedec” function in the PyWavelets library in python. Among the count-
less wavelets, the “Daubachies 4” (db4) wavelet in Discrete Wavelet Transform is 
a popular choice among ECG and EEG research in the past [17] [18].  

As shown below, the raw signal is being decomposed five times with the Dau-
bachies wavelet, which results in five array segments with decreasing complexity. 
Each segment is a representation of the original signal and reveals its frequency 
information on the time domain. Subsequently, the two features aforementioned 
are extracted from each coefficient array, giving information on its power spec-
trum. 

2.2.3. Empirical Mode Decomposition 
The last series of features are derived from Intrinsic Mode Functions (IMF) cal-
culated from EMD method. Similar to WVT (shown in Figure 2), EMD breaks a 
signal down into a number of IMFs, depending on the signal’s length and com-
plexity (shown in Figure 3). An IMF is defined as a function where the number 
of extrema and zero crossings must differ by at most one, and the mean value 
between the local minima and maxima envelopes at any point equals to zero. 
This method is specialized in processing nonlinear and nonstationary signals 
found abundant in nature and preserves the time domain. Essentially, the rela-
tive maxima and minima of the signal is connected by a spine line to create the 
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upper and lower envelope, encompassing all data points in between. After that, 
the mean value of the upper and lower envelopes is subtracted from the signal, 
creating the first IMF in the process called “sifting.” The IMF is then sifted mul-
tiple times, until the remainder function becomes monotonic, and thus cannot 
be sifted anymore. The resulting IMFs possess many properties of the original 
signal and are open to further analysis. Hilbert transform is then applied to the 
IMFs, converting them into analytic signals that have no negative frequency 
components.  

Below are five IMFs, processed through five rounds of sifting. As you can see, 
the signal gets less and less disorderly and oscillatory. After the five IMFs are 
generated, three features are extracted from each. First, the entropy of the IMF 
reflects the disorder of the system. The second feature is the mean envelope am-
plitude of the IMF. The envelope refers to the magnitude of the analytic signal, 
and the mean value suggests the power of the overall amplitude. Lastly, the vari-
ation of instantaneous frequency’s first derivative is calculated. It is extracted by 
differentiating the instantaneous phase, which correlates with the analytic sig-
nal’s phase angle. Subsequently, the first derivative calculates the degree of in-
stantaneous changes occurring in the variation of instantaneous frequency.  

 

 
Figure 2. An example of wavelet coefficients from a 9-second ictal signal processed by 
WVT. 
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Figure 3. An example of fifive IMFs from a 9-second ictal signal processed by EMD. 

2.3. EFEG 

The EFEG method is a recently developed signal reconstruction method that 
computes electrical field components of the raw signal. It takes into account the 
relative positions of EEG channels on the scalp during the recording: 

x i y i iE x E y F∗ ∗+ =                        (2) 

Ex and Ey form a virtual coordinate system of the electric field. In theory, the 
electric potential is the value recorded by EEG devices, indicating the degree of 
amplitude. That corresponds to Fi in the equation above, with i being the ith 
electrode. Ex and Ey are individually multiplied by xi and yi, their coordinates on 
the scalp. 

x i y i iE x E y N F∗ ∗+ + =                      (3) 

The reference electrode noise N, a common mode noise of 1 used to account 
for external distractions during EEG measurement that are common to the 
whole set of channels, is added, in order to get the final potential. This matrix 
multiplication serves the purpose of clarifying the calculation: 

1 1 11

1

x

y

i i i

x y E F
E

x y N F

    
    × =    
        

                        (4) 
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As we can see, Ex and Ey, the values we try to obtain, are on the left side of the 
equation and cannot be directly calculated or accessed. To move the coordinate 
matrix to the right, its inverse matrix must be multiplied on the right side, by 
definition. However, this cannot be done directly given that the coordinate ma-
trix is not a square matrix. Therefore, a method of pseudo-inverse function in 
python is called upon the coordinate matrix, so that Ex and Ey can be deducted 
from the given data: 

1
1 1 11

1

x

y

i i i

E x y F
E
N x y F

−
    
     = ×    
         

                       (5) 

The pseudo-inverse is not a real inverse; rather, it is called “pseudo-inverse” 
because when multiplied with the original matrix, it generates a matrix that 
closely resembles the identity matrix. After obtaining Ex and Ey components, the 
magnitude of the electric field components can be calculated by taking the 
square root of Ex squared added to Ey squared. It is a crucial parameter deducted 
from the calculated Ex and Ey, and can serve as a vital input for epilepsy classifi-
cation.  

Because EFEG calculation requires a set amount of channels for each matrix 
and EEG devices’ channel counts vary, EEG data cannot be directly processed. In 
order to apply the same EFEG coordinate on different patients, we first create 
five different coordinate systems, each with different parameters. 

As shown in Figure 4, the virtual channels have 3 different dispositions: coor-
dinate 1, 3, and 5 all have the optional common-mode noise added, while coor-
dinate 2 and 4 do not; coordinate 3 and 4 have a virtual coordinate centered 
around the origin, whereas coordinate 5 has a segmented coordinate that only 
spreads out in the first quadrant. The existence of five different coordinates is to 
validate which set of coordinates has the best performance. Coordinate matrices 
are designed to have different weight and sparsity. Coordinate 1, 2 and 5 are de-
signed to be unsymmetrical and have a weight-center bias to simulate electrode 
array curvature.  

Due to the fact that most devices have the different number of channels, a 
group of 16 channels is selected from the varied channel amount of different re-
cording devices. First, features of data from all channels are entered as input to a 
random forest classifier. A series of random features is also introduced to ensure 
the accuracy of channel selection. In the classifier, input feature values are 
changed successively, and the influence of their variation to the classifier per-
formance is recorded. The more visibly it changes, the more important the 
channel is to the classification. The channels’ relevance to the performance is 
ranked, and the top 8 or 16 is chosen. 

2.4. Classification Model 

Among the numerous machine learning models, the Support Vector Machine 
(SVM) is one of the most suitable “weak” classifiers for seizure detection, as  
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Figure 4. Virtual EFEG coordinates: the Red scatter plot cor-
responds to coordinate 1 and 2, the Green corresponds to 
coordinate 3 and 4, and the Blue corresponds to coordinate 5. 

 
opposed to the “stronger” classifiers, such as DNN. SVM is ideally suited for 
seizure prediction because it is good at generalization and insensitive to overfit-
ting, problems often encountered in the training process of a small dataset. The 
linear SVM sets up linear boundaries that separate one class of objects from the 
other, and it does so by creating a hyperplane between the two classes. As the 
Figure 5 shows, the optimal hyperplane exists when margins between itself and 
the nearest objects from the two classes are maximized. Samples on the margins 
are called support vectors, and they serve as calibrations for how effective the  
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Figure 5. SVM [19]. 

 
model is. If the training set is nonlinear or inseparable in 2-dimensional space, 
as in the case of EEG data, the model utilizes kernel trick to raise the data into 
multi-dimensional space by creating one or more “kernel functions,” such as the 
Gaussian kernel or radial basis function kernel [19]. These kernel functions add 
more parameters to the original 2D data, thus creating a virtual space that 
transforms the data into linear separable data points. In python, the scikit-learn 
package provides the basic implementation of this model. In this article, the 
kernel function we use is a polynomial kernel function. For other parameters, we 
use python’s default built-in parameters. 

Another category of the weak classifier is the decision tree model. The input 
data x passes through multiple decision tree models, each with hundreds of es-
timators and decision nodes to classify x. With each training data input, the 
model adjusts its decision trees to match the output label better. Compared to a 
regular decision tree (shown in Figure 6), the random forest model encapsulates 
the advantages of it, and improves upon the overfitting problem with the algo-
rithm of bootstrap aggregating. This algorithm is designed to improve perfor-
mance by lowering the variance of the data, and is especially effective when 
combined with decision tree models. Essentially, the random forest model 
creates bootstrap samples based on the original data, and selects the best split 
data in each randomly chosen sample set, instead of the whole data. After that, 
the prediction results of all trees are averaged to generate a final result based on 
a majority vote [20]. As a weak classifier, the random forest can be ensemble 
with SVM and increase the sensitivity and specificity, by allowing a decision 
made from considering both models. Additionally, the random forest plays a 
role in determining the channel importance using features input. By analyzing 
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the overall features extracted from the raw data of individual channels, the ran-
dom forest can decide the channels that matter the most by altering their para-
meters and calculating the effects. The larger the effects are, the more important 
the channel is. A set of random data is also included as a pseudo channel to en-
sure the correctness of the importance calculation.  

The final classifier that is included in the ensemble model is DNN, the strong 
classifier (shown in Figure 7). Different from Artificial Neural Network (ANN) 
in general, DNN possesses an increased amount of hidden layers and perceptron 
to process the data. In our model, the input layer is constructed by a feature 
column instead of separate data points, which is then passed through the middle 
hidden layers, and are assigned an individual weight. Next, the output from the 
previous layers is passed to the final output layer that gives a final prediction re-
sult. In each layer, an activation function determines what value gets output and 
passed to the next layer. For this purpose, we use the Rectified Linear Units 
(ReLU) function, an activation function with increasing popularity for its per-
formance. The model trains on datasets by adjusting weights associated with  
 

 
Figure 6. Random forest classifier, from  
https://levelup.gitconnected.com/random-forest-re-gression-209c0f354c84. 
 

 
Figure 7. Deep neural network [21]. 
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each perceptron every time a dataset is passed through, and the loss function 
serves as a measure of quantifying how well the model performs. By feeding 
more data, the model tries to find a minimal value to the loss function, which 
indicates optimal performance level. For this, the Binary Cross Entropy loss 
function is chosen in our model, because it is designed for a binary prediction 
and suits our situation. As a newly developed neural network model, it performs 
exceptionally well on a sufficient dataset. We, however, have access to very li-
mited EEG data from epilepsy patients, which can incur serious overfitting. This 
means that when given a set of data from a different patient, performance accu-
racy from DNN alone is often too low to offer any useful predictions. Therefore, 
it is combined with the weak classifiers that would decrease its performance on 
the same patient, but increase its generalization that enables model migration 
and will apply to a wider range of patients.  

After models from Random Forest, SVM, and DNN are trained on the same 
set of data, a simple voting classifier is ensemble by taking prediction outputs 
from all three models, adding them together, and dividing by three. This way, 
the ensemble model will make a 0/1 prediction to a certain data point only if at 
least two out of the three models return this corresponding result. Accidental 
prediction errors can thereby be moderately avoided and reduce specificity. 

3. Experiments 
3.1. Dataset Description 

The dataset comprises ictal and non-ictal data, with two 9-second and a sample 
rate of 500 Hz examples of both shown in Figure 8.  
 

 
Figure 8. 9 s seizure and non-seizure time domain signal of patient 2. 
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The ictal signal is typically characterized by rapid and drastic changes, whe-
reas the non-ictal signal is usually more stable and regular. However, given the 
variability of brain waves and different patients, these characteristics are not de-
finite. In the model training process, datasets from patients 2, 3, 4, 6, and 7 are 
used, whose details are shown in Table 4. Datasets from patients 1 and 5 are 
used as validation sets to evaluate the effectiveness of model migration. 

3.2. Signal Reconstruction Result 

A total of 3069 seconds of ictal and non-ictal data are imported from five differ-
ent patients, as shown in Table 4. For the channel selection process, 150 seconds 
of continuous ictal and non-ictal data are selected from the dataset. They are 
first applied to the Butterworth band pass filter, which filters out artifacts and 
unwanted noises and keeps the relevant signals between frequencies 0.3 Hz and 
50 Hz—the common range of brainwave frequencies. After that, the original 
sample rate of 500 SPS (samples per second) is resampled to 250 SPS, which 
maintains the signal quality and reduces calculation time. After the two 
pre-processing methods are applied, the resulting raw data becomes ready for 
feature extraction—an important process to gather useful information from the 
dataset. As stated in the Method section, 36 features in total are extracted from 
the raw dataset. Each measurement has a window of three seconds, which means 
every three seconds of data is computed to generate one number of that feature, 
totaling up to 100 calculated feature points per individual feature. These features 
are stored in a number of 2D NumPy arrays, related to the number of channels 
with each patient.  

After all features are calculated and stored, a random forest model with 1000 
estimators and a random state of 42 is created. Out-of-bag samples are used for 
the sake of channel importance calculation. For each patient, a corresponding 
array is created to store the importance score each channel has on this feature. 
For example, a patient with 20 channels will have an array of 20 by 36, each ele-
ment signifying the “score” of the cross between the horizontal channel and the 
vertical feature. The said “score” is subsequently calculated by training the ran-
dom forest model on each feature from each patient, with the help of “rfpimp”,  
 
Table 4. Patients and data description. 

Subject No. of channels Sampling rate Rec. time (ictal) Rec. time (non-ictal) 

1 96 5 kHz 3 m 36 s 3 m 42 s 

2 55 500 Hz 3 m 09 s 3 m 21 s 

3 16 500 Hz 4 m 54 s 5 m 00 s 

4 88 500 Hz 7 m 03 s 7 m 30 s 

5 104 500 Hz 2 m 30 s 2 m 30 s 

6 88 500 Hz 5 m 06 s 5 m 00 s 

7 96 500 Hz 5 m 06 s 5 m 00 s 
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a python library with feature importance calculation functions. The “impor-
tance” function takes in the model and test data, and produces a score for each 
channel as a measurement for their performance, which implies how important 
each channel is to the feature calculation. After data from the 36 features is ob-
tained, they are added up to get a final score for each channel. This score deter-
mines the top 8 and 16 channels in each patient, which concludes the channel 
selection process.  

Consequently, begins EFEG-based channel combination. First, all 3069 seconds 
of data are loaded, but only the top 8 and 16 channels are kept. They have then 
applied the same pre-processing methods. After that, the dot product of each 
dataset matrix and EFEG coordinate is calculated. At this point, each EFEG 
coordinate generates an array with rows representing Ex, Ey, and the optional 
common mode noise, which is discarded, leaving Ex and Ey. Another row of 
magnitude is added, computed by taking the square root of Ex and Ey’s square. 
Subsequently, the three EFEG combination arrays are ready to be extracted for 
the same 36 features, which is the final process of signal reconstruction. The 
window is the same three seconds, and that produces a total of 1023 features per 
EFEG coordinate per combination (Ex, Ey, magnitude). After concatenating the 
three combinations’ features vertically, a new array of 36 by 3069 features is 
generated, prepared to train the models. As an example, Figure 9 graphs out 
nine seconds of Ex, Ey, and magnitude data from the five coordinates to show the 
distinctions between different EFEG—reconstructed signals.  

Before feeding features to models, a 1-D array of 3069 labels, consistent with 
the total number of feature values per feature, is created. In order to test their 
general performance score, five identical Random Forest models are constructed 
to serve as the performance benchmark. Primarily, the train test split function 
from the sklearn library is called, which splits the feature dataset into a training 
set and testing set, each comprising 70% and 30% of the original dataset. The 
random state is set to 42 to ensure the reproducibility of the results. The bench-
mark results are shown in Figure 10.  

As the figure suggests, the first two coordinates have relatively balanced accu-
racy, sensitivity, and specificity, albeit the sensitivity is slightly lower than the 
latter three coordinates. The two best-performing coordinates are coordinates 4 
and 5, each with an accuracy score of 92.07% and 91.75%, a comparatively satis-
factory result of the signal reconstruction process.  

Subsequently, the results of our novel EFEG approach is compared with the 
traditional signal reconstruction method of averaging signals from every channel 
(shown in Figure 11). First of all, two sets of raw data from the training patient 
datasets are separated from the five that are processed by EFEG coordinates. The 
two datasets include data from the best 8 and 16 channels normally as the EFEG 
feature columns. After that, instead of applying the EFEG method, all signal data 
in the same time window are averaged and used to create new feature columns 
by calculating the same feature values as the EFEG processed data. Afterward, 
both sets are passed through the ensemble models and evaluated. 
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Figure 9. Reconstructed signal comparison for different EFEG virtual coordinate matrices. 
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Figure 10. EFEG combination benchmark test result using random forest. 

 

 
Figure 11. Seizure detection result comparison between different EFEG virtual coordi-
nate matrix combined signal and conventional channel averaging signal. 

3.3. Model Transferring Test Result 

Although the trained models performed well with test labels from the same set of 
patients, it does not guarantee the same performance with other patients. In our 
experiment, data from two patients, 1 and 5, are prepared to evaluate our mod-
el’s performance in different patients (shown in Figure 12). These two patients 
never entered the training process, so they haven’t been encountered by our 
model. In this stage, the two patients’ data undergo the same process as the 
training dataset, dividing into the EFEG group, and are tested against their re-
spective model. 
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Figure 12. Seizure detection result for new patients using transferred model. 

 
As a result, all five coordinates perform worse when they are tested against the 

two new patients, which is a reasonable outcome considering the vast difference 
between devices and patients. All the accuracy scores are measured five times 
and averaged to eliminate outliers. For patient 1, the best performing EFEG 
coordinate, coordinate 5, scored 82.85%, with the next best coordinate 4 scoring 
77.45%; for patient 5, however, all models perform significantly worse, with the 
best coordinate 4 scoring 59.33%. The discrepancy in results from the two pa-
tients is likely caused by distinct brain mechanisms that function in different pa-
tients, malfunctioning recording devices, or motion artifacts. After all, patient 5 
does have a shorter recording time, and the signal collected may not be the best 
representatives. Overall, the EFEG reconstructed coordinates still demonstrate a 
decent performance level on new patients, and successfully prove their model 
transfer capabilities. 

4. Discussion  
4.1. Summary and Expectation 

Overall, the new EFEG method notably increases the model performance of all 
datasets that are applied to this method, as evidenced by Figure 11, where it is 
compared with the traditional way of averaging all signals. While the traditional 
methodology only considers the signal separately with no regard to their relative 
position, strength, and importance, the EFEG method creates a virtual electrical 
field that takes all those features into consideration. Through the use of channel 
importance selection, important channels are ranked before putting into EFEG 
calculation, which guarantees only the most relevant channels get involved in 
the process. It also aids in model transfer across different devices, which usually 
have vastly different channel amounts. Additionally, a third common-mode 
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noise column is included in three of the five virtual coordinates, aimed to reduce 
possible artifacts during the EEG recording, that are common to all channels. Its 
efficacy is sufficiently demonstrated in Figure 12, where coordinate 5, the coor-
dinate with a common mode noise included, performs the best compared to the 
other ones.  

The selection of features is also an important step in achieving superior re-
sults. Currently, our model is trained on a set of 36 different features, as enume-
rated in Table 3. A vital objective when considering the choices of features is 
their distinction under different labels. In EEG data training, the paramount 
feature is the “power” contained in each time window. Figure 8 visualizes the 
common difference between ictal and non-ictal signals—the former is fickler 
and generally contains higher power, while the latter is usually more orderly and 
has lower power. Most of our selections of features, including Hjorth parame-
ters, PSD, mean, variation, the entropy of wavelets and Hilbert transformed 
EMD, evaluate the power volume in some ways. This in general leads to a higher 
performance level.  

In addition to the EFEG method and feature selection, the choices of proper 
classifiers also play an important role in generating accurate results. Considering 
the difference between EEG signals across patients, two “weak” and one “strong” 
classifiers are chosen. The two “weak” ones, random forest and SVM, are in-
cluded to mitigate overfitting caused by DNN, a powerful classifier. By ensem-
bling the three models, their probability predictions are averaged, and a result is 
generated based on their combined prediction. This way, the model can be more 
tolerant toward ambiguous features, where the result of a single classifier is in-
sufficient. Moreover, combining three classifiers this way can also contribute to 
model transfer between different patients, an intractable challenge in current 
prediction models due to the volatility of EEG signals.  

4.2. Future Work 

Several improvements can be made to our current model to encompass a wider 
range of data and be a step closer to clinical or commercial application. Firstly, a 
pre-ictal phase can be added, which is the time range most seizure detection 
models try to recognize. Given that this phase is before the physical seizure on-
set, being able to discern it is necessary on any devices that aim to give users 
enough time for intervention methods. However, as the pre-ictal phase can often 
be mingled with the ictal and non-ictal phase, it will be a challenge to accurately 
predict its presence before the ictal phase and will require some further investi-
gations and improvements to the current EFEG modality.  

Secondly, the dataset we employ is from the Kaggle Competition. Therefore, 
information on the device from which the EEG signals are recorded is not in-
cluded. A potential improvement to the raw dataset can be to have the device’s 
model, enabling us to use real coordinates instead of virtual ones we arranged 
based on channel importance. Although not confirmed, the actual coordinates 
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can most likely improve the EFEG accuracy, and thus eliminating the need to 
rank the channels based on their importance as well, since their positions will be 
provided.  

Based on the detection results, the model transfer performance in patient 5 is 
subpar, presumably stemming from the fact that the EEG signals provided are 
not sufficient to ensure that the model performs at its best level. In future expe-
riments, EEG data from more patients with longer recording time should be ac-
quired and provided to the model.  

5. Conclusion  

Through a combination of data pre-processing, channel selection, EFEG signal 
reconstruction, feature selection, and using multiple classifier models ensem-
bling, our new classification model proves to perform successfully on test data. 
The innovative EFEG method combined with channel selection overcame the 
challenge of lacking information on electrodeposition. By selecting high impor-
tance channels and assigning them to virtual EFEG coordinate, we are able to 
achieve model transfer between different devices and patients with the highest 
accuracy at 82%. The original model ensembling of Random Forest, SVM, and 
DNN classifiers complement each other and combine to produce a result that 
allows model migration across different patients without suffering too much 
from a lowered accuracy. On average, our proposed ensembled model attains a 
prediction result at about 85% on average which is better than classical channel 
averaging models by 7% - 14%.  
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