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In this work, we study a plate equation with time delay in the velocity, frictional damping, and logarithmic source term. Firstly, we
obtain the local and global existence of solutions by the logarithmic Sobolev inequality and the Faedo-Galerkin method. Moreover,
we prove the stability and nonexistence results by the perturbed energy and potential well methods.

1. Introduction

In this article, we consider a plate equation with frictional
damping, delay, and logarithmic terms as follows:

utt + Δ2u + αut tð Þ + βut x, t − τð Þ = u ln uj jγ for x, tð Þ ∈Ω × 0,∞ð Þ,

u x, tð Þ = ∂u x, tð Þ
∂υ

= 0 for x, tð Þ ∈ ∂Ω × 0,∞ð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ for x ∈Ω,
ut x, tð Þ = j0 x, tð Þ for x, tð Þ ∈Ω × −τ, 0ð Þ,

8>>>>>><
>>>>>>:

ð1Þ

where Ω ⊂ RN , N ≥ 1, is a bounded domain with smooth
boundary ∂Ω. τ > 0 denotes time delay, and α, β, and γ are
real numbers that will be specified later. Generally, logarith-
mic nonlinearity seems to be in supersymmetric field theories
and in cosmological inflation. From quantum field theory,
that kind of (ujujp−2 ln jujk) logarithmic source term seems
to be in nuclear physics, inflation cosmology, geophysics,
and optics (see [1, 2]). Time delays often appear in various
problems, such as thermal, economic, biological, chemical,

and physical phenomena. Recently, partial differential
equations have become an active area with time delay (see
[3, 4]). In 1986, Datko et al. [5] indicated that, in boundary
control, a small delay effect is a source of instability. Gener-
ally, a small delay can destabilize a system which is uniformly
stable [6]. To stabilize hyperbolic systems with time delay,
some control terms will be needed (see [7–9] and references
therein).

For the literature review, firstly, we begin with the studies
of Bialynicki-Birula and Mycielski [10, 11]. The authors
investigated the equation with the logarithmic term as
follows:

utt − uxx + u − εu ln uj j2 = 0, ð2Þ

where the authors proved that, in any number of dimensions,
wave equations including the logarithmic term have local-
ized, stable, soliton-like solutions.

In 1980, Cazenave and Haraux [12] studied the equation
as follows:

utt − Δu = u ln uj jk, ð3Þ
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where the authors in [12] proved the existence and unique-
ness of the solutions for equation (3). Gorka [2] obtained
the global existence results of solutions for one-dimensional
equation (3). Bartkowski and Gŏrka [1] considered the weak
solutions and obtained the existence results.

In [13], Hiramatsu et al. studied the equation as follows:

utt − Δu + u + ut + u2
�� ��u = u ln u: ð4Þ

In [14], Han established the global existence of solutions
for equation (4).

In [15], Al-Gharabli and Messaoudi were concerned with
the plate equation with the logarithmic term as follows:

utt + Δ2u + u + h utð Þ = ku ln uj j: ð5Þ

They established the existence results by the Galerkin
method and obtained the explicit and decay of solutions uti-
lizing the multiplier method for equation (5).

In [16], Liu introduced the plate equation with the loga-
rithmic term as follows:

utt + Δ2u + utj jm−2ut = uj jp−2u log uj jk: ð6Þ

The author proved the local existence by the contraction
mapping principle. Also, he studied the global existence and
decay results. Moreover, under suitable conditions, the
author proved the blow-up results with Eð0Þ < 0.

In [17], Messaoudi studied the equation as follows:

utt + Δ2u + utj jm−2ut = uj jp−2u, ð7Þ

and obtained the existence results and obtained that, ifm ≥ p,
the solution is global and blows up in finite time if m < p.
Later, Chen and Zhou [18] extended this result. In the pres-
ence of the strong damping term (−Δut), Pișkin and Polat
[19] proved the global existence and decay of solutions for
equation (7). For more results about plate problems, see
[20–22].

In [7], Nicaise and Pignotti studied the equation as
follows:

utt − Δu + a0ut x, tð Þ + aut x, t − τð Þ = 0, ð8Þ

where a0, a > 0. They proved that, under the condition 0 ≤ a
≤ a0, the system is exponentially stable. The authors
obtained a sequence of delays that shows the solution is
unstable in the case a ≥ a0. In the absence of delay, some
other authors [23, 24] looked into exponential stability for
equation (8). In [9], Xu et al., by using the spectral analysis
approach, established the same result similar to [7] for the
one space dimension.

In [25], Nicaise et al. studied the wave equation in one
space dimension in the presence of time-varying delay. In
this article, the authors showed the exponential stability
results with the condition

a ≤
ffiffiffiffiffiffiffiffiffiffi
1 − d

p
a0, ð9Þ

where d is a constant and

τ′ tð Þ ≤ d < 1, ∀t > 0: ð10Þ

In [26], Kafini and Messaoudi studied wave equations
with delay and logarithmic terms as follows:

utt − Δu + μ1ut x, tð Þ + μ2ut x, t − τð Þ = uj jp−2u log uj jk:
ð11Þ

The authors proved the local existence and blow-up
results for equation (11).

In [27], Park considered the equation with delay and
logarithmic terms as follows:

utt − Δu + αut tð Þ + βut x, t − τð Þ = u ln uj jγ: ð12Þ

The author showed the local and global existence results
for equation (12). Also, the author investigated the decay
and nonexistence results for equation (12). In recent years,
some other authors investigate hyperbolic-type equations
with delay terms (see [28–33]).

In this work, we studied the local existence, global exis-
tence, nonexistence, and stability results of plate equation
(1) with delay and logarithmic terms, motivated by the above
works. There is no research, to our best knowledge, related to
plate equation (1) with the delay ðβutðx, t − τÞÞ term and
logarithmic (u ln jujγ) source term; hence, our work is the
generalization of the above studies.

This work consists of five sections in addition to the
introduction. Firstly, in Section 2, we recall some assump-
tions and lemmas. Then, in Section 3, we obtain the local
and global existence of solutions. Moreover, in Section 4,
we establish the nonexistence results. Finally, in Section 5,
we get the stability of solutions.

2. Preliminaries

In this part, we show the norm of X by k·kX for a Banach
space X. We give the scalar product in L2ðΩÞ by ð·, · Þ. We
show k·k2 by k·k, for brevity. Let B1 be the constant of the
embedding inequality

uk k2 ≤ B1 Δuk k2 for u ∈H2
0 Ωð Þ: ð13Þ

Wehave the following assumptions related to problem (1):

(H1). The weights of delay and dissipation satisfy

0 < βj j < α: ð14Þ

(H2). The constant γ in (1) satisfies

0 < γ < πe 2 N+1ð Þð Þ/N : ð15Þ

To get the main result, we have the lemmas as follows.
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Lemma 1 (see [34, 35]) (Logarithmic Sobolev inequality). For
any u ∈H1

0ðΩÞ,
ð
Ω

u2 ln uj jdx ≤ 1
2

uk k2 ln uk k2 + k2

2π
∇uk k2 − N

2
1 + ln kð Þ uk k2,

ð16Þ

where k is a positive real number.

Corollary 2. For any u ∈H2
0ðΩÞ,

ð
Ω

u2 ln uj jdx ≤ 1
2

uk k2 ln uk k2 + k2

2π
Δuk k22 −

N
2

1 + ln kð Þ uk k2,

ð17Þ

where k is a positive real number.

Remark 3.Assume that inequality (17) holds for all k > 0, and
we choose the constant k that satisfies

ρ =max e− N+1ð Þ/N , μ1/N
ffiffiffi
π

γ

r� �
< k <

ffiffiffi
π

γ

r
, ð18Þ

where μ is any real number with

0 < μ < 1: ð19Þ

Lemma 4 (see [12]) (Logarithmic Gronwall inequality). Sup-
pose that c > 0 and l ∈ L1ð0, T ; R+Þ. If a function f : ½0, T�
⟶ ½1,∞Þ satisfies

f tð Þ ≤ c 1 +
ðt
0
l sð Þf sð Þ ln f sð Þds

� �
, 0 ≤ t ≤ T , ð20Þ

then

f tð Þ ≤ cec
Ð t

0
l sð Þds, 0 ≤ t ≤ T: ð21Þ

We define

J vð Þ = 1
2

Δvk k2 − 1
2

ð
Ω

v2 ln vj jγdx + γ

4
vk k2, ð22Þ

I vð Þ = Δvk k2 −
ð
Ω

v2 ln vj jγdx, ð23Þ

for v ∈H2
0ðΩÞ; then,

J vð Þ = 1
2
I vð Þ + γ

4
vk k2: ð24Þ

Suppose that

d = inf
v∈H2

0 Ωð Þ\ 0f g
sup
λ≥0

J λvð Þ: ð25Þ

Then, it satisfies (see, e.g., [36–38])

0 < d = inf
v∈N

J vð Þ, ð26Þ

where N is the well-known Nehari manifold, denoted by

N = v ∈H2
0 Ωð Þ \ 0f g ∣ I vð Þ = 0

� 	
: ð27Þ

Lemma 5. I and J are the functions that satisfy

I λvð Þ = λ
∂J λvð Þ
λv

>0, 0 < λ < λ∗,
= 0, λ = λ∗,
<0, λ > λ∗,

8>><
>>: ð28Þ

for any v ∈H2
0ðΩÞ with kvk ≠ 0, where

λ∗ = exp Δvk k2 − ÐΩv2 ln vj jγdx
γ vk k2

 !
: ð29Þ

Proof. We obtain, for λ ≥ 0,

λ
∂
∂λ

J λvð Þ = λ λ Δvk k2 − λ
ð
Ω

v2 ln vj jγdx + γλ

2 vk k2
�

−λ
ð
Ω

v2 ln λj jγdx − γλ

2

ð
Ω

v2dx
�

= λ2 Δvk k2 −
ð
Ω

v2 ln vj jγdx − γ ln λj j
ð
Ω

v2dx
� �

= I λvð Þ,
ð30Þ

and therefore, we obtain the desired result. ☐

Remark 6. JðλvÞ has the absolute maximum value at λ∗, such
that

sup
λ≥0

J λvð Þ = J λ∗vð Þ = exp 2 Δvk k2 − 2Ð
Ω
v2 ln vj jγdx

γ vk k2
 !

γ

4 vk k2,

ð31Þ

for v ∈H2
0ðΩÞ.

Lemma 7. The potential depth d in (25) satisfies

d ≥
γ

4
eN

π

γ

� �N/2
= E1: ð32Þ
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Proof. By Corollary 2, (13), and (18), we have

I vð Þ ≥ 1 − k2γ
2π

 !
Δvk k2 + Nγ

2 1 + ln kð Þ vk k2 − γ

2 vk k2 ln vk k2

> Nγ

2 1 + ln kð Þ vk k2 − γ

2 vk k2 ln vk k2:
ð33Þ

Taking the limit k⟶
ffiffiffiffiffiffiffi
π/γp

, we obtain

I vð Þ ≥ Nγ

2 1 + ln
ffiffiffi
π

γ

r� �
−
γ

2 ln vk k2
� �

vk k2: ð34Þ

Taking into consideration this and (28), we get

0 = I λ∗vð Þ ≥ Nγ

2 1 + ln
ffiffiffi
π

γ

r� �
−
γ

2 ln λ∗vk k2 λ∗vk k2
� �

,

ð35Þ

and therefore,

λ∗vk k2 ≥ eN
π

γ

� �N/2
: ð36Þ

Hence, we have by (24) and (31)

sup
λ≥0

J λvð Þ = J λ∗vð Þ = 1
2 I λ∗vð Þ + γ

4 λ∗vk k2 = γ

4 λ∗vk k2 ≥ γ

4 e
N π

γ

� �N/2
:

ð37Þ

From the definition of d given in (25), we obtain the
result. ☐

3. Existence

In this part, we have studied the local existence, global exis-
tence, nonexistence, and stability results of plate equation
(1) with delay and logarithmic terms, motivated by the above
works. There is no research, to our best knowledge, related to
plate equation (1) with the delay (βutðx, t − τÞ) term and
logarithmic (u ln jujγ) source term; hence, our work is the
generalization of the above studies. Firstly, we introduce the
new function

y x, η, tð Þ = ut x, t − ητð Þ for x, η, tð Þ ∈Ω × 0, 1½ � × 0,∞ð Þ:
ð38Þ

Hence, problem (1) takes the form

utt + Δ2u + αut x, tð Þ + βy x, 1, tð Þ = u ln uj jγ for x, tð Þ ∈Ω × 0,∞ð Þ,
τyt x, η, tð Þ + yη x, η, tð Þ = 0 for x, η, tð Þ ∈Ω × 0, 1ð Þ × 0,∞ð Þ,

u x, tð Þ = ∂u x, tð Þ
∂υ

= 0 for x, tð Þ ∈ ∂Ω × 0,∞ð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ for x ∈Ω,
y x, η, 0ð Þ = j0 x,−ητð Þ = y0 x, ηð Þ for x, ηð Þ ∈Ω × 0, 1ð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð39Þ

Definition 8. Assume that T > 0. ðu, yÞ is a local solution of
problem (39) if it satisfies

u ∈ C 0, T½ � ;H2
0 Ωð Þ
 �

∩ C1 0, T½ � ; L2 Ωð Þ
 �
∩ C2 0, T½ � ;H−2 Ωð Þ
 �

,

utt , vð Þ + Δu, Δvð Þ + α ut tð Þ, vð Þ + β y 1, tð Þ, vð Þ
= u ln uj jγ, vð Þ for any v ∈H2

0 Ωð Þ,

τ
ð1
0
yt η, tð Þ, φ ηð Þð Þdη +

ð1
0
yη η, tð Þ, φ ηð Þ
� 

dη

= 0 for any φ ∈ L2 Ω × 0, 1ð Þð Þ,

u 0ð Þ = u0 inH2
0 Ωð Þ,

ut 0ð Þ = u1 in L2 Ωð Þ,

y 0ð Þ = y0 in L2 Ω × 0, 1ð Þð Þ: ð40Þ

3.1. Local Existence. In this part, we establish the local exis-
tence results similar to [8, 39].

Theorem 9. Suppose that (H1) and (H2) are satisfied. Then,
for the initial data u0 ∈H2

0ðΩÞ, u1 ∈ L2ðΩÞ, and y0 ∈ L
2ðΩ ×

ð0, 1ÞÞ, there exists a local solution ðu, yÞ for problem (39).

Proof. Let fvigi∈N be the orthogonal basis of H2
0ðΩÞ that is

orthonormal in L2ðΩÞ. Define φiðx, 0Þ = viðxÞ, and we extend
φiðx, 0Þ by φiðx, ηÞ over L2ðΩ × ð0, 1ÞÞ. We denote Vn =
spanfv1, v2,⋯,vng and Wn = spanfφ1, φ2,⋯,φng for n ≥ 1.
We consider the Faedo-Galerkin approximation solution
ðun, ynÞ ∈ Vn ×Wn of the form

un =〠
n

i=1
hni tð Þvi xð Þ,

yn x, η, tð Þ =〠
n

i=1
gn
i tð Þφi x, ηð Þ, n = 1, 2,⋯,

ð41Þ

solving the approximate system

untt , vð Þ + Δun, Δvð Þ + α unt tð Þ, vð Þ + β yn 1, tð Þ, vð Þ
=
ð
Ω

un ln unj jγvdx for v ∈ Vn,
ð42Þ

4 Advances in Mathematical Physics



τ
ð1
0
ynt η, tð Þ, φ ηð Þð Þdη +

ð1
0
ynη η, tð Þ, φ ηð Þ
� 

dη = 0 for φ ∈Wn,

ð43Þ
un 0ð Þ = un0 ,
unt 0ð Þ = un1 ,
yn 0ð Þ = yn0 ,

ð44Þ

where

un0 ⟶ u0 inH2
0 Ωð Þ,

un1 ⟶ u1 in L2 Ωð Þ,
yn0 ⟶ y0 in L2 Ω × 0, 1ð Þð Þ:

ð45Þ

Since problem (42)–(44) is a normal system of ordinary
differential equations, there exists a solution ðun, ynÞ on the
interval ½0, tnÞ, tn ∈ ð0, T�. The extension of that solution to
the ½0, TÞ is a consequence of the estimate below.

By replacing v by unt ðtÞ in (42) and by using the relation

ð
Ω

un ln unj jγunt dx =
d
dt

1
2

ð
Ω

unð Þ2 ln unj jγdx − γ

4 unk k2
� �

,

ð46Þ

we have

d
dt

1
2 untk k2 + 1

2 Δunk k2 + γ

4 unk k2
�

−
1
2

ð
Ω

unð Þ2 ln unj jγdx
�

= −α unt tð Þk k2 − β yn 1, tð Þ, unt tð Þð Þ:
ð47Þ

By replacing φ by ωynðη, tÞ in (43), we see that

ωτ

2
d
dt

ð
Ω

ð1
0
yn x, η, tð Þð Þ2dηdx = −

ω

2 yn 1, tð Þk k2 + ω

2 yn 0, tð Þk k2:

ð48Þ

Summing (47) and (48), we obtain

d
dt

En tð Þ = −α untk k2 − β yn 1, tð Þ, unt tð Þð Þ − ω

2 yn 1, tð Þk k2 + ω

2 yn 0, tð Þk k2,
ð49Þ

where

En tð Þ = 1
2 untk k2 + 1

2 Δunk k2 + γ

4 unk k2 − 1
2

ð
Ω

unð Þ2 ln unj jγdx

+ ωτ

2 ynk k2L2 Ω× 0,1ð Þð Þ,

ð50Þ

where

βj j < ω < 2α − βj j: ð51Þ

Utilizing Young’s inequality and the fact that ynðx, 0, tÞ
= unt ðx, tÞ, we obtain

d
dt

En tð Þ ≤ − α −
βj j
2 −

ω

2

� �
untk k2 − ω

2 −
βj j
2

� �
yn 1, tð Þk k2 ≤ 0,

ð52Þ

En tð Þ + C1

ðt
0
unt sð Þk k2ds + C2

ðt
0
yn 1, sð Þk k2ds ≤ En 0ð Þ,

ð53Þ

where

C1 = α −
βj j
2 −

ω

2 > 0,

C2 =
ω

2 −
βj j
2 > 0:

ð54Þ

Taking into consideration this and Corollary 2, we have

untk k2 + 1 − γk2

2π

 !
Δunk k2 + γ

2 1 +N 1 + ln kð Þð Þ unk k2

+ 2C1

ðt
0
unt sð Þk k2ds + 2C2

ðt
0
yn 1, sð Þk k2ds + ωτ ynk k2L2 Ω× 0,1ð Þð Þ

≤ 2En 0ð Þ + γ

2 unk k2 ln unk k2:
ð55Þ

By using (18), we obtain

1 − γk2

2π > 0,
γ

2 1 +N 1 + ln kð Þð Þ > 0,
ð56Þ

and therefore,

untk k2 + Δunk k2 + unk k2 +
ðt
0
unt sð Þk k2ds +

ðt
0
yn 1, sð Þk k2ds

+ ynk k2L2 Ω× 0,1ð Þð Þ ≤ c1 1 + unk k2 ln unk k2
� 

,

ð57Þ

where the sequel cj, j = 1, 2,⋯, shows a positive constant.
Also, we know that

un x, tð Þ = un x, 0ð Þ +
ðt
0
unt x, sð Þds: ð58Þ

Utilizing Cauchy-Schwarz’s inequality and (57), we
obtain
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un tð Þk k2 = 2 un 0ð Þk k2 + 2T
ðt
0
unt sð Þk k2ds

≤ 2 un 0ð Þk k2 + 2T
ðt
0
c1 1 + un sð Þk k2 ln un sð Þk k2
� 

ds

≤ c2 1 +
ðt
0
un sð Þk k2 ln un sð Þk k2ds

� �
:

ð59Þ

From Lemma 4, we arrive at

un tð Þk k2 ≤ c3e
c4T : ð60Þ

f ðsÞ = s ln s is the function which is continuous on ð0,∞Þ
, lims⟶0+ f ðsÞ = 0, lims⟶+∞ f ðsÞ = +∞, and f decreases on
ð0, e−1Þ and increases on ðe−1,+∞Þ; hence, we get by (57)
and (60)

untk k2 + Δunk k2 + unk k2 +
ðt
0
unt sð Þk k2ds +

ðt
0
yn 1, sð Þk k2ds

+ ynk k2L2 Ω× 0,1ð Þð Þ ≤ c5:

ð61Þ

Hence, there exists a subsequence of fðun, ynÞg, which we
still denote fðun, ynÞg, such that

un ⟶ u weakly star in L∞ 0, T ;H2
0 Ωð Þ
 �

,

unt ⟶ ut weakly star in L∞ 0, T ; L2 Ωð Þ
 �
,

yn ⟶ y weakly star in L∞ 0, T ; L2 Ω × 0, 1ð Þð Þ
 �
,

yn 1ð Þ⟶ y 1ð Þ weakly in L2 0, T ; L2 Ωð Þ
 �
:

ð62Þ

Utilizing the Aubin-Lions compactness theorem, we con-
clude that

un ⟶ u strongly in L2 0, T ; L2 Ωð Þ
 �
,

un ⟶ u a:e:inΩ × 0, Tð Þ:
ð63Þ

The function s⟶ s ln jsjγ is continuous on R; hence,

un ln unj jγ ⟶ u ln uj jγ a:e:inΩ × 0, Tð Þ: ð64Þ

Let

Ω1 = x ∈Ω ∣ unj j < 1f g,
Ω2 = x ∈Ω ∣ unj j ≥ 1f g:

ð65Þ

Thus, we obtain

ð
Ω

un ln unj jγð Þ2dx = γ2
ð
Ω1

un ln unj jð Þ2dx +
ð
Ω2

un ln unj jð Þ2dx
( )

≤ γ2 e−2 Ω1j j + e−2
2

q − 2

� �2ð
Ω2

unð Þqdx
( )

 for any q > 2,

ð66Þ

where we used

s ln sj j ≤ 1
e
 for 0 < s < 1,

s−κ ln s ≤
1
eκ

 for s ≥ 1 and κ > 0:
ð67Þ

By (57) and (66), we conclude that

ð
Ω

un ln unj jγð Þ2dx ≤ γ2 e−2 Ω1j j + e−2
2

q − 2

� �2
Bq
2 Δunk kq

( )
≤ c6,

ð68Þ

where B2 is the Sobolev imbedding constant of

H2
0 Ωð Þ ⊂ Lq Ωð Þ for q > 2, if N = 1, 2, 3, 4 ; 2 < q < 2N

N − 4 , if N ≥ 5:

ð69Þ

Therefore, we get from (68)

un ln unj jγ which is uniformly bounded in L∞ 0, T ; L2 Ωð Þ
 �
:

ð70Þ

From the Lebesgue bounded convergence theorem, (64),
and (70), we arrive at

un ln unj jγ ⟶ u ln uj jγ strongly in L2 0, T ; L2 Ωð Þ
 �
:

ð71Þ

We pass the limitm⟶∞ in (42) and (43). The remain-
der of the proof is standard and similar to [39, 40]. ☐

3.2. Global Existence. In this part, we obtain the global exis-
tence results for problem (39). For this goal, we define the
energy functional of problem (39):

E tð Þ = 1
2 utk k2 + 1

2 Δuk k2 + γ

4 uk k2 − 1
2

ð
Ω

u2 ln uj jγdx

+ ωτ

2 yk k2L2 Ω× 0,1ð Þð Þ,

ð72Þ

where ω is the positive constant given in (51). We see that

E tð Þ = 1
2 utk k2 + J u tð Þð Þ + ωτ

2 yk k2L2 Ω× 0,1ð Þð Þ =
1
2 utk k2

+ 1
2 I u tð Þð Þ + γ

4 uk k2 + ωτ

2 yk k2L2 Ω× 0,1ð Þð Þ:
ð73Þ
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By the same arguments similar to (52), we infer that

d
dt

E tð Þ ≤ −C1 utk k2 − C2 y 1, tð Þk k2 ≤ 0, ð74Þ

where C1 and C2, given in (54), are positive constants.

Lemma 10. Suppose that (H1) and (H2) are satisfied. If Eð0
Þ < d and Iðu0Þ > 0, then the solution u of problem (1) satisfies

I u tð Þð Þ > 0 for t ∈ 0, T½ Þ, ð75Þ

where T is the maximal existence time of the solutions.

Proof.We know that Iðu0Þ > 0 and u is continuous on ½0, TÞ;
hence, we have

I u tð Þð Þ > 0 for some interval 0, t1½ Þ ∈ 0, T½ Þ: ð76Þ

Let t0 be the maximum of t1 satisfying (76). Assume that
t0 < T ; then, Iðuðt0ÞÞ = 0, that is,

u t0ð Þ ∈N : ð77Þ

Therefore, we obtain by (26)

J u t0ð Þð Þ ≥ inf
v∈N

J vð Þ = d: ð78Þ

We see that this is in contradiction to the relation as fol-
lows:

J u t0ð Þð Þ ≤ E t0ð Þ ≤ E 0ð Þ < d: ð79Þ

By (74) and Lemma 10, we see that EðtÞ is a nonincreas-
ing function. ☐

Theorem 11. The solution u is global, under the conditions of
Lemma 10.

Proof. It suffices to show that kutk2 + kΔuk2 is bounded inde-
pendent of t. By Lemma 10, (73), and (74), we get

utk k2 ≤ utk k2 + I u tð Þð Þ ≤ 2E tð Þ ≤ 2E 0ð Þ < 2d: ð80Þ

In a similar way, we get

uk k2 < uk k2 + 2
γ
I u tð Þð Þ = 4

γ
J u tð Þð Þ ≤ 4

γ
E tð Þ ≤ 4

γ
E 0ð Þ < 4d

γ
:

ð81Þ

By Corollary 2 and (23), we conclude that

Δuk k2 = I u tð Þð Þ + γ
ð
Ω

u2 ln uj jdx ≤ 2E tð Þ + γ

2 uk k2 ln uk k2

+ k2γ
2π Δuk k2 − Nγ

2 1 + ln kð Þ uk k2:
ð82Þ

By taking the limit k⟶ ρ+ in this inequality and from
(81), we obtain

1 − ρ2γ

2π

� �
Δuk k2 ≤ 2E tð Þ + γ

2 ln uk k2 −N 1 + ln ρð Þ
 �
uk k2

< 2d + γ

2 ln 4d
γ

� �� �
−N 1 + ln ρð Þ uk k2

= 2d + γ

2 ln 4d
γ
e−Nρ−N

� �� �
uk k2:

ð83Þ

By Lemma 7 and (18), we get

ln 4d
γ
e−Nρ−N

� �
≥ ln π

γ

� �N/2
ρ−N

 !

= ln
ffiffiffi
π

γ

r
ρ−1

� �N
 !

ln 1 = 0:
ð84Þ

Therefore, we see by (81) and (83) that

1 − ρ2γ

2π

� �
Δuk k2 ≤ 2d + 2d ln 4d

γ
e−Nρ−N

� �
: ð85Þ

Hence, we conclude that

Δuk k2 < 2d 1 − ρ2γ

2π

� �−1
1 + ln 4d

γ
e−Nρ−N

� �� �
: ð86Þ

Therefore, we complete the proof by (80) and (86). ☐

4. Nonexistence

In this part, similar to [41–43], we get the nonexistence
results for problem (1). Firstly, we need the lemma as follows.

Lemma 12. Assume that (H1) and (H2) are satisfied. If Eð0Þ
< E1 and Iðu0Þ < 0, then the solution u of problem (1) satisfies

I u tð Þð Þ < 0 for t ∈ 0, T½ Þ, ð87Þ

u tð Þk k2 > 4E1

γ
 for t ∈ 0, T½ Þ, ð88Þ

where T is the maximal existence time of the solutions.

Proof.We know that Iðu0Þ < 0 and u is continuous on ½0, TÞ;
hence, we have

I u tð Þð Þ < 0 for some interval 0, t1½ Þ ⊂ 0, T½ Þ: ð89Þ

Let t0 be the maximal time satisfying (89) and assume
that t0 < T ; then, Iðu0Þ = 0, such that

u t0ð Þ ∈N : ð90Þ
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Therefore, we obtain

d ≤ J u t0ð Þð Þ = 1
2 I u t0ð Þð Þ + γ

4 u t0ð Þk k2 ≤ E u t0ð Þð Þ ≤ E 0ð Þ < E1:

ð91Þ

This is in contradiction to Lemma 7. Thus, (87) is proved.
By Lemma 7, (31), and (87), we conclude that

E1 ≤ d ≤ J λ∗u tð Þð Þ = exp 2 Δuk k2 − 2
Ð
Ω
u2 ln uj jγdx

γ uk k2
 !

γ

4 uk k2

< γ

4 uk k2:
ð92Þ

Therefore, the proof is completed. ☐

Theorem 13. Suppose that (H1) and (H2) are satisfied. Let
Eð0Þ < ζE1, where 0 < ζ < 1, and Iðu0Þ < 0. Then, the solution
of problem (1) blows up at infinity.

Proof. Firstly, we set

F tð Þ = ζE1 − E tð Þ: ð93Þ

By (74), we obtain

F ′ tð Þ = −E′ tð Þ ≥ C1 utk k2 + C2 y 1, tð Þk k2 ≥ 0: ð94Þ

Utilizing (72), (88), and (94), we see that

0 < F 0ð Þ ≤ F tð Þ ≤ ζE1 +
1
2

ð
Ω

u2 ln uj jγdx < γ

4 uk k2

+ 1
2

ð
Ω

u2 ln uj jγdx:
ð95Þ

We define

G tð Þ = F tð Þ + ε u, utð Þ + εα

2 uk k2: ð96Þ

By (39) and (72), we get

G′ tð Þ = F ′ tð Þ + ε utk k2 − ε Δuk k2 − εβ u, y 1, tð Þð Þ
+ ε
ð
Ω

u2 ln uj jγdx = F ′ tð Þ + 2ε utk k2 − εβ u, y 1, tð Þð Þ

− 2εE tð Þ + εγ

2 uk k2 + ωτ yk k2L2 Ω× 0,1ð Þð Þ:

ð97Þ

Utilizing Young’s inequality and (94), we obtain

β u, y 1, tð Þð Þ ≤ βj j δ uk k2 + 1
4δ y 1, tð Þk k2

� �
≤ δ βj j uk k2 + βj j

4δC2
F ′ tð Þ:

ð98Þ

By adapting this to (97) and from (88) and (93), we have

G′ tð Þ ≥ 1 − ε βj j
4δC2

� �
F ′ tð Þ + 2ε utk k2 + εγ

2 − ε βj jδ
� 

uk k2

+ 2εF tð Þ − 2εζE1 + ωτ yk k2L2 Ω× 0,1ð Þð Þ

≥ 1 − ε βj j
4δC2

� �
F ′ tð Þ + 2ε utk k2 + ε 1 − ζð Þ γ2 − βj jδ

� 
uk k2

+ 2εF tð Þ + ωτ yk k2L2 Ω× 0,1ð Þð Þ:

ð99Þ

Firstly, fix δ > 0 such that ð1 − ζÞðγ/2Þ − jβjδ > 0 and then
choose ε > 0 small enough so that 1 − ðεjβj/4δC2Þ > 0. Then,
by (94), we get

G′ tð Þ ≥ c8 F tð Þ + utk k2 + uk k2
 �
≥ 0: ð100Þ

Also, we conclude that

G tð Þ ≤ c9 F tð Þ + utk k2 + uk k2
 �
: ð101Þ

Taking ε > 0 small enough again, we obtain

G 0ð Þ = F 0ð Þ + ε u0, u1ð Þ + εα

2 u0k k2 > 0: ð102Þ

By (100) and (102), we get

G tð Þ ≥ G 0ð Þ > 0: ð103Þ

Utilizing (100) and (101), we see that

G′ tð Þ ≥ c10G tð Þ, ð104Þ

and therefore,

G tð Þ ≥ ec10tG 0ð Þ > 0: ð105Þ

Therefore, GðtÞ blows up at infinity. Consequently, the
proof is completed. ☐

5. Stability

In this part, we obtain the stability of global solutions. Firstly,
we define the perturbed energy by

Ψ tð Þ = E tð Þ + εΦ tð Þ + εΞ tð Þ, ð106Þ

where ε > 0, ΦðtÞ = ðut , uÞ, and ΞðtÞ = Ð
Ω

Ð 1
0e

−τηy2ðx, η, tÞdη
dx.

Lemma 14.Under the conditions of Lemma 10, for C3, C4 > 0,
we obtain

C3E tð Þ ≤Ψ tð Þ ≤ C4E tð Þ: ð107Þ
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Proof. Utilizing Lemma 10 and Young’s inequality, we have

Φ tð Þ + Ξ tð Þj j ≤ 1
2 utk k2 + 1

2 uk k2 + yk k2L2 Ω× 0,1ð Þð Þ

≤
1
2 utk k2 + 2

γ

γ

4 uk k2 + 1
2 I u tð Þð Þ

� �

+ yk k2L2 Ω× 0,1ð Þð Þ =
1
2 utk k2 + 2

γ
J u tð Þð Þ

+ yk k2L2 Ω× 0,1ð Þð Þ ≤ c7E tð Þ:
ð108Þ

Taking ε > 0 small enough, we complete the proof. ☐

Theorem 15. Assume that (H1) and (H2) are satisfied. Sup-
pose that Eð0Þ < E1 and Iðu0Þ > 0. Hence, for C0, C5 > 0, we
obtain

0 < E tð Þ ≤ C0e
−C5t for t ≥ 0: ð109Þ

Proof. From (39) and Young’s inequality, we get

Φ′ tð Þ = utk k2 − Δuk k2 − α ut tð Þ, u tð Þð Þ − β y 1, tð Þ, u tð Þð Þ
+
ð
Ω

u2 ln uj jγdx ≤ utk k2 − 1
2 Δuk k2 + α2B1 ut tð Þk k2

+ β2B1 y 1, tð Þk k2 +
ð
Ω

u2 ln uj jγdx:

ð110Þ

By using the second equation of (39) and the integration
by parts, we obtain

Ξ′ tð Þ = −
2
τ

ð
Ω

ð1
0
e−τηy x, η, tð Þyη x, η, tð Þdηdx

= −
1
τ

ð
Ω

ð1
0
e−τη

∂
∂η

y2 x, η, tð Þdηdx

= −
e−τ

τ
y 1, tð Þk k2 + 1

τ
y 0, tð Þk k2 −

ð
Ω

ð1
0
e−τηy2 x, η, tð Þdηdx

≤
1
τ

utk k2 − e−τ
ð
Ω

ð1
0
y2 x, η, tð Þdηdx:

ð111Þ

Summing these and (74), we obtain

Ψ′ tð Þ ≤ − C1 − ε − εα2B1 −
ε

τ

� 
utk k2 − ε

2 Δuk k2

− C2 − εβ2B1

 �

y 1, tð Þk k2 + ε
ð
Ω

u2 ln uj jγdx

− εe−τ yk k2L2 Ω× 0,1ð Þð Þ:

ð112Þ

Adding and subtracting ξEðtÞ with 0 < ξ < 2ε, we get

Ψ′ tð Þ ≤ −ξE tð Þ − C1 − ε − εα2B1 −
ε

τ
−
ξ

2

� �
utk k2

−
ε

2 −
ξ

2 −
ξγB1
4

� �
Δuk k2 − C2 − εβ2B1


 �
y 1, tð Þk k2

+ ε −
ξ

2

� �ð
Ω

u2 ln uj jγdx − εe−τ −
ξωτ

2

� �
yk k2L2 Ω× 0,1ð Þð Þ:

ð113Þ

Utilizing the logarithmic Sobolev inequality, we have

Ψ′ tð Þ ≤ −ξE tð Þ − C1 − ε − εα2B1 −
ε

τ
−
ξ

2

� �
utk k2

− ε
1
2 −

γk2

2π

 !
−
ξ

2 1 − γk2

2π

 !
−
ξγB1
4

( )
Δuk k2

+ γ

2 ε −
ξ

2

� �
ln uk k2 −N 1 + ln kð Þ� 	

uk k2

− C2 − εβ2B1

 �

y 1, tð Þk k2 − εe−τ −
ξωτ

2

� �
yk k2L2 Ω× 0,1ð Þð Þ:

ð114Þ

Now, choose ε > 0 small enough, such that

C1 − ε − εα2B1 −
ε

τ
> 0,

C2 − εβ2B1 > 0:
ð115Þ

By taking ξ > 0 sufficiently small and noting that ð1/2Þ
− ðγk2/2πÞ > 0 (see (18)), we infer that

Ψ′ tð Þ ≤ −ξE tð Þ + γ

2 ε −
ξ

2

� �
ln uk k2 −N 1 + ln kð Þ� 	

uk k2,

ð116Þ

where 0 < Eð0Þ < E1; therefore, there exists 0 < μ < 1, that is,
Eð0Þ = μE1. Therefore, we obtain by (81)

ln uk k2 < ln 4
γ
E tð Þ

� �
≤ ln 4

γ
E 0ð Þ

� �
= ln 4μE1

γ

� �

= ln μeN
π

γ

� �N/2
 !

:

ð117Þ

Hence, by (18), we arrive at

ln uk k2 −N 1 + ln kð Þ ≤ ln μeN
π

γ

� �N/2
 !

−N 1 + ln kð Þ

=N ln μ1/N
ffiffiffi
π

γ

r
k−1

� �
<N ln 1 = 0:

ð118Þ
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Substituting this into (116), we arrive at

Ψ′ tð Þ ≤ −ξE tð Þ: ð119Þ

As a result, from Lemma 14, we completed the proof. ☐

6. Conclusions

Recently, there have been many published works related to
wave equations with time delay. There were no local exis-
tence, global existence, nonexistence, and stability results of
the plate equation with delay and logarithmic source terms,
to the best of our knowledge. Firstly, we have obtained the
local and global existence results. Then, we have obtained
the nonexistence of solutions. Finally, we have proved stabil-
ity results under sufficient conditions.
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