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In this work, we study a plate equation with time delay in the velocity, frictional damping, and logarithmic source term. Firstly, we
obtain the local and global existence of solutions by the logarithmic Sobolev inequality and the Faedo-Galerkin method. Moreover,
we prove the stability and nonexistence results by the perturbed energy and potential well methods.

1. Introduction

In this article, we consider a plate equation with frictional
damping, delay, and logarithmic terms as follows:

Uy + Au+oauy(t) + Buy(x,t— 1) =uln [u’  for (x,t) € 2 x (0,00),

u(x ) = aug;, H_g

u(x, 0) = g (x), 4y (%, 0) = 1y (x)

for (x,t) € 02 x (0,00),

forx € Q,
for (x,t) € Q2 x (-7,0),

(1)

(1) = o (5. )

where Qc RN, N>1, is a bounded domain with smooth
boundary Q. 7> 0 denotes time delay, and &, 3, and y are
real numbers that will be specified later. Generally, logarith-
mic nonlinearity seems to be in supersymmetric field theories
and in cosmological inflation. From quantum field theory,
that kind of (u|ul’ In |u|*) logarithmic source term seems
to be in nuclear physics, inflation cosmology, geophysics,
and optics (see [1, 2]). Time delays often appear in various
problems, such as thermal, economic, biological, chemical,

and physical phenomena. Recently, partial differential
equations have become an active area with time delay (see
[3, 4]). In 1986, Datko et al. [5] indicated that, in boundary
control, a small delay effect is a source of instability. Gener-
ally, a small delay can destabilize a system which is uniformly
stable [6]. To stabilize hyperbolic systems with time delay,
some control terms will be needed (see [7-9] and references
therein).

For the literature review, firstly, we begin with the studies
of Bialynicki-Birula and Mycielski [10, 11]. The authors
investigated the equation with the logarithmic term as
follows:

Uy — U+t —eu In Ju|* =0, (2)

where the authors proved that, in any number of dimensions,
wave equations including the logarithmic term have local-
ized, stable, soliton-like solutions.

In 1980, Cazenave and Haraux [12] studied the equation
as follows:

Uy — Au=u In |uff, (3)
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where the authors in [12] proved the existence and unique-
ness of the solutions for equation (3). Gorka [2] obtained
the global existence results of solutions for one-dimensional
equation (3). Bartkowski and Gorka [1] considered the weak
solutions and obtained the existence results.

In [13], Hiramatsu et al. studied the equation as follows:

Uy — M+ u+u + WP |u=uln u. (4)

In [14], Han established the global existence of solutions
for equation (4).

In [15], Al-Gharabli and Messaoudi were concerned with
the plate equation with the logarithmic term as follows:

Uy + Au+u+h(u,) =ku In|u. (5)

They established the existence results by the Galerkin
method and obtained the explicit and decay of solutions uti-
lizing the multiplier method for equation (5).

In [16], Liu introduced the plate equation with the loga-
rithmic term as follows:

Uy + Au+ |uy "2, = [uff?u log [ul*. (6)

The author proved the local existence by the contraction
mapping principle. Also, he studied the global existence and
decay results. Moreover, under suitable conditions, the
author proved the blow-up results with E(0) < 0.

In [17], Messaoudi studied the equation as follows:

Uy + At |u "y = [, (7)

and obtained the existence results and obtained that, if m > p,
the solution is global and blows up in finite time if m < p.
Later, Chen and Zhou [18] extended this result. In the pres-
ence of the strong damping term (—Au,), Piskin and Polat
[19] proved the global existence and decay of solutions for
equation (7). For more results about plate problems, see
[20-22].

In [7], Nicaise and Pignotti studied the equation as
follows:

Uy — Au+ agu, (x, t) + au,(x, t — 7) =0, (8)
where a,, a > 0. They proved that, under the condition 0 <a
<a,, the system is exponentially stable. The authors
obtained a sequence of delays that shows the solution is
unstable in the case a>a,. In the absence of delay, some
other authors [23, 24] looked into exponential stability for
equation (8). In [9], Xu et al., by using the spectral analysis
approach, established the same result similar to [7] for the
one space dimension.

In [25], Nicaise et al. studied the wave equation in one
space dimension in the presence of time-varying delay. In
this article, the authors showed the exponential stability
results with the condition

a<vV1-da, 9)

Advances in Mathematical Physics

where d is a constant and

t'(t)<d<1, Vt>0. (10)
In [26], Kafini and Messaoudi studied wave equations
with delay and logarithmic terms as follows:

Uy — A+ pyu, (%, 1) + pyu,(x, t = 7) = [uff *u log |u\k

(11)

The authors proved the local existence and blow-up
results for equation (11).

In [27], Park considered the equation with delay and
logarithmic terms as follows:

Uy — Au+ o, (1) + Buy(x, t —7) = u In |ul’. (12)

The author showed the local and global existence results
for equation (12). Also, the author investigated the decay
and nonexistence results for equation (12). In recent years,
some other authors investigate hyperbolic-type equations
with delay terms (see [28-33]).

In this work, we studied the local existence, global exis-
tence, nonexistence, and stability results of plate equation
(1) with delay and logarithmic terms, motivated by the above
works. There is no research, to our best knowledge, related to
plate equation (1) with the delay (Bu,(x,t—7)) term and
logarithmic (u In |u|") source term; hence, our work is the
generalization of the above studies.

This work consists of five sections in addition to the
introduction. Firstly, in Section 2, we recall some assump-
tions and lemmas. Then, in Section 3, we obtain the local
and global existence of solutions. Moreover, in Section 4,
we establish the nonexistence results. Finally, in Section 5,
we get the stability of solutions.

2. Preliminaries

In this part, we show the norm of X by ||-||y for a Banach
space X. We give the scalar product in L?(Q) by (-, -). We
show ||-||, by ||-||, for brevity. Let B, be the constant of the
embedding inequality

[|u]|> < By ||Au|]* foru e Hy(Q). (13)
We have the following assumptions related to problem (1):
(HI). The weights of delay and dissipation satisfy
0<|p|<a. (14)
(H2). The constant y in (1) satisfies
0 <y < mePNIN, (15)

To get the main result, we have the lemmas as follows.
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Lemma 1 (see [34, 35]) (Logarithmic Sobolev inequality). For
any u € H}(Q),

2 1 2 2 k2 2 N 2
u? In [uldx < = |Ju))? In fJul]® + — ||Vu|? = = (I +1n k)|l
o 2 2n 2

(16)
where k is a positive real number.

Corollary 2. For any u € Hj(Q2),

1 K N
J w? In Juldz <  flul* In [|u]” + | Aul5 = — (1+In K)[|u|,
o
(17)
where k is a positive real number.

Remark 3. Assume that inequality (17) holds for all k > 0, and
we choose the constant k that satisfies

p =max {e_(N“)/N,y”N\/g} <k< \/g, (18)

where p is any real number with
O<pu<l. (19)
Lemma 4 (see [12]) (Logarithmic Gronwall inequality). Sup-

pose that ¢>0 and 1€ L'(0, T;R"). If a function f : [0, T
—> [1,00) satisfies

f(t)gc(1+rl(s)f(s) 1nf(s)ds>, 0<t<T, (20)

0

then
f(t) <ce Jdod o<r<T, (21)
We define
J)= avP =3[ vinppaxs Lt @)
2 2)q 4"
I(v)= ||Av||2—J v2 In |v|"dx, (23)
(0]
for v e Hy(Q); then,
J(v)= 210+ L. (24)
2 4
Suppose that
d= inf supJ(Av). (25)

veHG(Q\{0} 220

3
Then, it satisfies (see, e.g., [36-38])
0<d:3£1/£](v), (26)
where N is the well-known Nehari manifold, denoted by
N ={veHy(Q)\ {0} |1(v)=0}. (27)
Lemma 5. I and ] are the functions that satisfy
>0,0< A< A,
I(/\v) _ /\a](AV) -0, A= A*, (28)
Av
<0, A> A%,
for any v € HA(Q) with ||v|| # 0, where
Av|)? = [V In |v]'d
3 = exp (n il Pl ) | 29)
YlIvl

Proof. We obtain, for A >0,

Ai](lv):/\ /\HAVHZ—/\ v? In [v|"dx + ﬂHv||2
oA o 2
—AJ v2 In [A[dx - ﬁj vzdx}
Q 2 Jo

=2 (vl - | i ey in | o)
Q Q
=I(Av),
(30)
and therefore, we obtain the desired result. 0

Remark 6. J(Av) has the absolute maximum value at A*, such
that

201Av|12 =2 v* In |v|'dx
sup] () = J(A"y) —exp (A= 2lor 0PI v
0 validl 4

(31)

for ve HA(Q).

Lemma 7. The potential depth d in (25) satisfies

N/2
dzgeN(%) -E,. (32)



Proof. By Corollary 2, (13), and (18), we have

sz 2 Ny 2 Yoz 2
I(v) = (1—M)||AV + = (L+In k) |[v]|" = Z{|v[* In [l

Ny 4
> 7(1 +Ink)||v||* - 5 V]I In |||,
(33)

Taking the limit k — /71/y, we obtain

I(v) > {I\;V (1 +In \/i) - g In ||v|2}||v||2. (34)

Taking into consideration this and (28), we get

N
0=I(A"v) > {_y (1 +In \/§> -V IIA*VIIZIIA*VIIZ}’
2 y) 2

(35)

and therefore,

2\ N2
||)L*v||22eN<> . (36)
4
Hence, we have by (24) and (31)

* 1 * * * ﬂ N/Z
sup/(Av) = J(A*v) = JI(A"v) + %HA v = %HA v > %N (;> :

A=0

(37)

From the definition of d given in (25), we obtain the
result. O

3. Existence

In this part, we have studied the local existence, global exis-
tence, nonexistence, and stability results of plate equation
(1) with delay and logarithmic terms, motivated by the above
works. There is no research, to our best knowledge, related to
plate equation (1) with the delay (Bu,(x,t— 7)) term and
logarithmic (u In |u|") source term; hence, our work is the
generalization of the above studies. Firstly, we introduce the
new function

for (x,7,t) € 2x[0,1] x (0,00).
(38)

Y1) = uy(x, t = 17)

Advances in Mathematical Physics

Hence, problem (1) takes the form

Uy + Au+ auy(x,t) + By(x, L, 1) =u In |u]’  for (x, t) € Q x (0,00),
9, (%1 1) +y, (61, 1) =0 for (x,7,t) € 2x (0,1) x (0,00),

u(x ) = a”é’;’ f)

(x,0) =t (3), 4,(5,0) = 1 (x)

=0 for (x, t) € 002 x (0,00),
forx e Q,
(%1, 0) = jo (%=17) = yo (% 1) for (x, 17) € 2% (0, 1).

(39)

Definition 8. Assume that T > 0. (u, y) is a local solution of
problem (39) if it satisfies

ue C([0, T]; Hy(€2)) n C'([0, T]; L*(Q)) n C*([0, T]; H*(Q)),

(t> V) + (At Av) + (w4 (2), v) + By (1, 1), v)
=(uln |u|",v) foranyve H%(Q),

1

o[ 0utn - man | (3,000 00)
=0 foranygpe LZ(Q x (0, 1)),

u(0)=u, inHE(Q),
u,(0)=u, inL*(Q),
(0)=y, inL*(Qx(0,1), (40)

3.1. Local Existence. In this part, we establish the local exis-
tence results similar to [8, 39].

Theorem 9. Suppose that (H1) and (H2) are satisfied. Then,
for the initial data u, € H3(Q), u; € L*(Q), and y, € L*(Q x
(0, 1)), there exists a local solution (u, y) for problem (39).

Proof. Let {v;},y be the orthogonal basis of HZ(Q) that is
orthonormal in L*(Q2). Define ¢,(x, 0) = v,(x), and we extend
¢,(x,0) by ¢,(x,n) over L*(Q2x (0,1)). We denote V, =
span{v, v,,---,v,} and W, =span{¢,¢,,---¢,} for n>1.
We consider the Faedo-Galerkin approximation solution
(u",y") € V,, x W, of the form

(41)
Ve t)=Y gl (e (xm), n=1,2
i=1
solving the approximate system
(s V) + (Au”, Av) + a(uf (1), v) + B (1, 1), v)
(42)

=J u'In |u"|"vdx forveV,,
Q
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o rn gt [ (i om)in=0 forpew,

(43)
u"(0) = ug,
u'(0) = ul, (44)
y"(0) =0,
where
uy — uy  inHp(Q),
W' —u, inl*(Q), (45)

yo—y, inL*(Qx(0,1)).

Since problem (42)-(44) is a normal system of ordinary
differential equations, there exists a solution (1", ") on the
interval [0, ¢,), t, € (0, T]. The extension of that solution to
the [0, T) is a consequence of the estimate below.

By replacing v by u/ () in (42) and by using the relation

1
J u" In |u"|uldx = i {J (u”)2 In |u"|"dx - Y ||u"||2},
a dt 2, 4
(46)

we have

R e P e R
=~ ()] ~ BO" (1) (1)
(@7)

By replacing ¢ by wy" (1, t) in (43), we see that
wt d 1”x Modndx - C 1L AR+ C v 0. 12
Sail | orenoraae=-Sranrs ool
(48)

Summing (47) and (48), we obtain

2 g1y = —alful |2 - BO" (1, 6, 2(0)) -

w 2
— 0, )|,
o Sl

(49)

w. o, 2
— 1,¢
L) +

where

By = S L V- L) m
2 2 4 0

2

wt )
t 17" 122 ox01))>
(50)

where

Bl <w<2a-|f| (51)

Utilizing Young’s inequality and the fact that y"(x, 0, ¢)
=ul'(x, t), we obtain

gE == (e LD - (5 - Liraop<o

(52)
t 2 ! 2
E"<t>+c1j 15| ds+c2j 1y (1,5)|ds < E*(0),
0 0
(53)
where
Ci=a- |7/3‘ - =>0,
(54)
C,= @ @ >0
2 2

Taking into consideration this and Corollary 2, we have

2
n2 _& nZX ny2
PH+G zﬂ)Mu|+zu+Nu+mwmu|

t ot
+zcljouuﬂsmzdw2ch0\|y"<1,s>u2ds+wr||y"uiz(m<o,1>>

<2E"(0)+ L In ).
(55)
By using (18), we obtain
k2
- 5o,

=

(1+N(1+1nk)) >0,

and therefore,

t t
2 2 2 2 2
Jaaf |7 + A"+ [Ju” +J [EACI dHJ [y (L, 5)[[°ds

& (L [l In ")),

+ [y HLZ(QX 1) S
(57)

where the sequel ; -+, shows a positive constant.

Also, we know that

»j=1,2,-

u'(x,t) =u"(x,0) + Jt up (x, s)ds. (58)

0

Utilizing Cauchy-Schwarz’s inequality and (57), we
obtain



t
(0 =2 ()" + 27| [ (o)
n 2 ! n 2 n 2
<20 (O) + 27| ¢ (1+ (9 n [ 5) s

<1+ [ 1@l I oo Fas).
(59)

From Lemma 4, we arrive at
[u" (1)) < ez (60)

f(s) =s1n sis the function which is continuous on (0, o)
,limg . f(s) =0, lim,__, . f(s) =+00, and f decreases on
(0,e™") and increases on (e7!,+00); hence, we get by (57)
and (60)

t t
2 2 2 2 2
[P+ P P+ [ s [ (0, 9) P
0 0

n2
+ly ||L2(Qx(o,1)) S G-

(61)

Hence, there exists a subsequence of { (", y") }, which we
still denote {(u", ")}, such that
u" — u  weaklystarin L°(0, T'; Hé(Q)),
u — u, weakly starin L (0, T; L*(Q2)),
y"—y weakly starin L (0, T'; L*(Q x (0, 1))),
y"(1) — y(1) weakly inL? (O, T; LZ(Q)).
(62)
Utilizing the Aubin-Lions compactness theorem, we con-
clude that
u" —u stronglyinL*(0, T; L*(02)),
a.e.inQx (0, T).

(63)

u"—u
The function s — s In |s|" is continuous on R; hence,
u In|u") —uln|u]’ aeinQx(0,T). (64)

Let

O, ={xeQ||u"| <1},
Q,={xeQ||u"|>1}.

Thus, we obtain
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J(u”ln |u“y)2dx:y2{J (u" In |u"\)2dx+J (u"ln|u"|)2dx}
0 Q

1 2

2 \?
<y {ez|.(21 +e? <E> JQ (u")qu} forany q > 2,
2

(66)
where we used
1
|sIns|<— forO<s<l,
. (67)
s¥Ins< — fors>1landx>0.
ex

By (57) and (66), we conclude that

2 \2
JQ(u” In [u"[")*dx < y2{62|91| +e? (q—2> Bg||Au”||q} < ¢

(68)
where B, is the Sobolev imbedding constant of
2 . 2N .
Hi(Q) cL1(Q) forq>2,if N=1,2,3,4;2<g< N_4,1fN25.
(69)

Therefore, we get from (68)
u" In ["|"  which s uniformly bounded in L* (0, T; L*(€2)).
(70)

From the Lebesgue bounded convergence theorem, (64),
and (70), we arrive at

u"In [u"]" — u In |u|’ stronglyin L* (0, T;LZ(Q)).

(71)

We pass the limit m — 00 in (42) and (43). The remain-
der of the proof is standard and similar to [39, 40]. O

3.2. Global Existence. In this part, we obtain the global exis-
tence results for problem (39). For this goal, we define the
energy functional of problem (39):

1 1 1
E(0)= 3 [+ 5 1P + Ful = 5| o in
9]

wT 5
t HyHLZ(Qx(O,l))’
(72)

where w is the positive constant given in (51). We see that

1 wT 1
E(t) = 5 1wl + T () + = [P oy = 5 ol

(73)

1 y , WT 5
+ 5 1) + 2wl + == Wl oxgon))-
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By the same arguments similar to (52), we infer that

ZEO=-Cillu |’ - Gy ] <o, (74)
where C, and C,, given in (54), are positive constants.

Lemma 10. Suppose that (H1) and (H2) are satisfied. If E(0
) < dandI(u,) > 0, then the solution u of problem (1) satisfies

I(u(t))>0 fortel0,T), (75)
where T is the maximal existence time of the solutions.

Proof. We know that I(u,) > 0 and u is continuous on [0, T);
hence, we have
I(u(t)) >0 forsomeinterval [0, t,) € [0, T). (76)

Let t, be the maximum of ¢, satisfying (76). Assume that
t, < T then, I(u(t,)) =0, that is,

u(ty) e . (77)
Therefore, we obtain by (26)

J(u(ty)) > inf J(v) = . (78)

We see that this is in contradiction to the relation as fol-
lows:

J(u(ty)) < E(ty) < E(0) < d. (79)

By (74) and Lemma 10, we see that E(¢) is a nonincreas-
ing function. O

Theorem 11. The solution u is global, under the conditions of
Lemma 10.

Proof. It suffices to show that ||u,||* + || Aul|* is bounded inde-
pendent of . By Lemma 10, (73), and (74), we get

[l ||* < [|me||” + I(u(t)) < 2E(t) < 2E(0) < 2d. (80)
In a similar way, we get

Jul? < ull? + %I(u(t)) = 2 J(u() < §E<t> < %E(O) <

4

Y
By Corollary 2 and (23), we conclude that

| Au|® = I(u(t)) +yJ u? In |u|dx <2E(t) + gHuHZ In [|u?

Ny
IIA PP = =~ (L In k.

(82)

By taking the limit k — p* in this inequality and from
(81), we obtain

(1= B2 jawy? <2600+ L o - N+ )

<2d+ Z( ( >) N(1+1n p)|[ul?
4d
2+ 2 fin (S5 ) L
(83)
By Lemma 7 and (18), we get
4d o\ N2
1 " ,N _-N 1 - -N
(om0
(84)

o () e

Therefore, we see by (81) and (83) that
2 4d
(1 - ﬂ) |Au|? <2d +2d In <_ eNpN>. (85)
2 Y

Hence, we conclude that

2 -1
| Aul|® < Zd(l - %) (1 +In (%eNpN>>. (86)

Therefore, we complete the proof by (80) and (86). O

4. Nonexistence

In this part, similar to [41-43], we get the nonexistence
results for problem (1). Firstly, we need the lemma as follows.

Lemma 12. Assume that (H1) and (H2) are satisfied. If E(0)
< E, and I(u,) < 0, then the solution u of problem (1) satisfies

I(u(t)) <0 forte|0,T), (87)

u(t)|]? > 47151 forte[0,T), (88)

where T is the maximal existence time of the solutions.

Proof. We know that I(u,) < 0 and u is continuous on [0, T);
hence, we have
I(u(t)) <0 forsomeinterval [0,¢,) C [0, T). (89)

Let £, be the maximal time satisfying (89) and assume
that £, < T; then, I(u,) =0, such that

u(ty) € N (90)



Therefore, we obtain

d<J(u(t)) =

N —

(o1)

This is in contradiction to Lemma 7. Thus, (87) is proved.
By Lemma 7, (31), and (87), we conclude that

2| Au|® -2 u* In |u|'d
Elsdsf(/\*u(t))=exp<” i L x)%””nz

il
Y
<
(92)
Therefore, the proof is completed. O
Theorem 13. Suppose that (H1) and (H2) are satisfied. Let
E(0) < E,, where 0<{ < 1, and I(u,) < 0. Then, the solution
of problem (1) blows up at infinity.
Proof. Firstly, we set
F(t)=(E, - E(t). (93)
By (74), we obtain

F'(t)==E'(t) 2 Cy|u,||* + C|ly(L, 1) 2 0. (94)

Utilizing (72), (88), and (94), we see that

1
0<F(0)<F(t)<(E, + EJ u? In |ulVdx < %Hu”z
1 o (95)
+ —J u* In |u|"dx.
2)a

We define
e
G(t) = F(t) +e(u, u;) + 7||“||2- (96)

By (39) and (72), we get
G'(t) = F'(t) + e]lu|* - el| Aul* = ef(u, y(1, 1))
+ sJ u? In [uVdx = F'(t) + 2e||u,||* - eB(u, y(1, 1))
Q

4
—2¢E(t) + ) [|ue]|* + wTHyHiZ(Qx(O,l))'
(97)
Utilizing Young’s inequality and (94), we obtain
Bl y(1, 1)) < |8 (Bl1ulP + X Iy o)) <olBlul + L2 k' o).
b)) = a5 VLI )= 16C,

(98)

(u(ty)) + L |[u(to) | < E(u(ty)) < E(0) < E,.
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By adapting this to (97) and from (88) and (93), we have

/()2 (1= ok ) F' () 2l + (5 - el

+2eF(t) - 2¢(E, + (’UTHJ/H%Z(QX(O,I))
€| )4
. (1 . %)F'(t) + 2efu | +e((1-0)L - |10 Jul?
+2¢eF(f) + “’T”)’”iz(gx(o,n)'
(99)

Firstly, fix § > 0 such that (1 - {)(y/2) — |B|6 > 0 and then
choose € > 0 small enough so that 1 — (¢]f]/46C,) > 0. Then,
by (94), we get

G'(t) 2 cg (F(t) + [|uy||* + ||u))) 2 0. (100)
Also, we conclude that
G(t) < ¢ (F(t) + ] + |u)- (101)
Taking € > 0 small enough again, we obtain
G(0) = F(0) + (g ) + = g2 > 0. (102)
By (100) and (102), we get
G(t) = G(0) > 0. (103)
Utilizing (100) and (101), we see that
G'(t) = ¢c;yG(t), (104)
and therefore,
G(t) > €' G(0) > 0. (105)

Therefore, G(¢) blows up at infinity. Consequently, the
proof is completed. O

5. Stability

In this part, we obtain the stability of global solutions. Firstly,
we define the perturbed energy by

W (t) = E(t) + eD(t) + e5(t), (106)

where ¢ >0, O(¢t) = (u,, u), and E(t) = jgjée‘myz (x,m, t)dn
dx.

Lemma 14. Under the conditions of Lemma 10, for C5, C, > 0,
we obtain

C3E(t) <W(t) < CLE(t). (107)
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Proof. Utilizing Lemma 10 and Young’s inequality, we have

_ 1 1
9(0) + Z(0)| < 3 14l + 5 10 + 192 oy
1 2 1
< sl (St 31w
1 2
+ ||)’||iz(9x(01) = §||”t|| + y]< (1))
+ ||)’||i2(ox(o,1)) < ¢E(t).
(108)
Taking € > 0 small enough, we complete the proof. O
Theorem 15. Assume that (H1) and (H2) are satisfied. Sup-

pose that E(0) < E; and I(u,) > 0. Hence, for C,, Cs >0, we
obtain

0<E(t)<Coe ™" fort=0. (109)

Proof. From (39) and Young’s inequality, we get

@' (£) = [ ||* = || Aul|” = oy (£), (1)) -

)

1

+J u In [ulVdx < ||u,|)* - =
Q 2

Bl (L, 1), u(t))
14u]]* + o By |, (1) |

+ BB,y (L) + J 2 In |uf'dx.
Q

(110)

By using the second equation of (39) and the integration
by parts, we obtain

~ 2( "
gw=-1[ | eytenoy
0Jo

e
TJalo on

*T

1
e AR e I U &2 (x, 7, 1)
0

(% 17, 1) dndx

*(x, 1, t)dndx

1
< sl - | 2 oanas
0Jo
(111)

Summing these and (74), we obtain

W (5)<=(C —e—ea’By - ) u,|* - 5 [ Au|’

- (Cz—sﬁzBl)Hy(l,t)H +€J u? In |ulVdx
Q

—ce "

||)’||i2(ox(o,1))'
(112)

Adding and subtracting £E(t) with 0 < & < 2¢, we get

¥ (0280 - (€ —e-ealB = & = 3w

- (5 -5 - ) b - (om0

3 . ot
+ (g_ 3 Jguz In |u)’dx - (ee" - > HJ’”LZ Qx(0,1))°

(113)

Utilizing the logarithmic Sobolev inequality, we have

(0 <88() - (€ —e-ea's = £ = S

{C—i)—i(l—};) il }IIA I’
+X< >{ln||u|| — N(1+1In k) }u?

Ew'r
> H)’HLZ Qx(0,1))"

(114)

(€= o)y - (667 -

Now, choose ¢ > 0 small enough, such that

€
C,—e—ex’B, — = >0,
T

(115)
C, —¢f*B, >0.

By taking & > 0 sufficiently small and noting that (1/2)
— (pk*/27) > 0 (see (18)), we infer that

(1) <-EE(t) + g (e— g) {In ||ju|* - N(1 +Ink)}|u|?

(116)

where 0 < E(0) < E; therefore, there exists 0 < y < 1, that is,
E(0) = uE,. Therefore, we obtain by (81)

In [Julf* <In (fE(t)) <In (fE(0)> ~In (4”E1>
Y Y 14
N (117)
=In (yeN () )
Y
Hence, by (18), we arrive at

N/2
In [Ju> -~ N(1+In k) <In (WN(%) ) ~N(1+Ink)

=NlIn <y1/N\/§kl) <NInl1=0.
Y

(118)
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Substituting this into (116), we arrive at

P (1) < -EE(1). (119)

As a result, from Lemma 14, we completed the proof. O

6. Conclusions

Recently, there have been many published works related to
wave equations with time delay. There were no local exis-
tence, global existence, nonexistence, and stability results of
the plate equation with delay and logarithmic source terms,
to the best of our knowledge. Firstly, we have obtained the
local and global existence results. Then, we have obtained
the nonexistence of solutions. Finally, we have proved stabil-
ity results under sufficient conditions.
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