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ABSTRACT 
 

Aim: The aim was to validate the Systolic Time Intervals (STI) measured by Ballistocardiography 
(BCG) with STI derived from simultaneously performed Transthoracic Echocardiogram (TTE) and 
attempt to create an AI algorithm that automatically calculates Tei Index from BCG tracings. 
Study design:  Cross-sectional study. 
Place and Duration of Study: Department of Cardiology and Department of Electrophysiology of 
Sri Jayadeva Institute of Cardiovascular Sciences & Research, Bangalore, India, between January 
2020 and January 2021. 
Methodology: Two hundred seventy-four patients with clinically indicated TTE were enrolled in the 
study, average age was 52. Simultaneous recordings on BCG and TTE were done. 150 patients had 
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clinically usable TTE images for accurate calculations. STI was calculated independently by 
operators experienced in TTE and BCG. Results were compared using Pearson’s R. A proprietary 
AI algorithm for automatically calculating the MPI, was trained over a subset of patients. Its accuracy 
in detecting STI was compared to that of TTE and manually calculated STI from BCG. 
Results: There was a strong positive correlation (r=0.766, P<0.00, 99%CI [0.691,0.824]) between 
the TTE and BCG derived MPI values. The result was validated over predetermined subgroups of 
subjects with reduced EF (EF<50) and subjects with normal EF (EF>=50). The AI algorithm had 
correlation of 0.54(p<0.01) with the MPI calculated by TTE and 0.34(P<0.10) with the manually 
calculated MPI on the BCG. 
Conclusion: BCG derived manual and automated MPI correlates well with TTE derived MPI in a 
variety of EF fraction subgroups. Automated calculation algorithms for MPI derived from BCG 
remain a work under progress. 
 

 
Keywords: Ballistocardiogram; transthoracic echocardiogram; systolic time intervals; myocardial 

performance index. 
 
1. INTRODUCTION 
 

Heart failure is a major cause of morbidity and 
mortality. Studies have shown that patients with 
heart failure may have gone through a phase of 
asymptomatic left ventricular (LV) dysfunction, 
where objective LV measurements reveal 
abnormalities in cardiac contractility, but signs 
and symptoms of overt heart failure are not 
present. [1] Also, serial assessment of LV 
function is important post-myocardial infarction, 
in individuals receiving chemotherapy with 
cardiotoxic drugs, dilated cardiomyopathy and 
infiltrative cardiomyopathies like amyloidosis, 
sarcoidosis. The most commonly used modalities 
currently for assessment of LV function include 
echocardiography and cardiac magnetic 
resonance imaging (CMR). However, the utility of 
these modalities in the frequent serial 
assessment of LV function and large-scale 
screening to assess asymptomatic individuals 
with LV dysfunction is limited due to the technical 
requirements and costs involved. 
 
Myocardial Performance Index (MPI or Tei Index) 
reflects combined measures of left ventricular 
systolic and diastolic functions. It is defined as 
the sum of isovolumic contraction and isovolumic 
relaxation time divided by ejection time. [2–6] 
MPI has been used for the overall estimation of 
the LV function under a variety of diseased 
conditions, such as dilated cardiomyopathy, 
amyloidosis, coronary artery disease, heart 
transplantation, heart failure, as well as in 
prospective studies of the general population           
[7-16]. However, a number of studies have cast 
doubt on its value because of multiple reasons 
like poor clinical agreement with other metrics, 
normal values in cases of heart failure with 
preserved ejection fraction, low diagnostic 

accuracy in subjects with heart failure and left-
ventricular diastolic dysfunction and that a single 
value of the index fails to diagnose the actual 
cause.[17–19] 
 
Currently, MPI is measured as an instantaneous 
value during a TTE whilst the patient is at rest. 
Continuous MPI values have not been reported 
owing to technological challenges such as 
unavailability of an ambulatory device to conduct 
cardiovascular ultrasound, the high cost of the 
present systems and the complexity involved in 
operating them that limit the measurement of 
MPI within hospital settings. BCG is a technique 
that captures the body’s vibrations and recoil 
arising due to the cardiac expulsion of blood into 
the arteries and respiratory effort. [20–22] 
Waveforms obtained by BCG signal coincide with 
the specific events during the cardiac cycle. 
[23,24] BCG can therefore be used to calculate 
serial MPI values over a period of time and allow 
for its evaluation of these values in clinical 
scenarios.  
 
We propose to validate the calculation of MPI 
derived from one such novel non-contact, non-
invasive BCG recording device with the MPI 
calculated from a TTE simultaneously and 
attempt to create an algorithm that will automate 
the calculation of the MPI from the BCG tracings. 
 

2. METHODOLOGY 
 
2.1 Study Patients 
 
The present study is a prospective study carried 
out in the Department of Cardiology in Sri 
Jayadeva Institute of Cardiovascular Sciences 
and Research (SJICR), Bangalore, India. All the 
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patients were explained about the study in detail. 
A thorough history, physical examination was 
done for every patient.  
 
We excluded female patients because there was 
a lack of availability of female trainers for the 
device, patients with arrhythmias, paced rhythm, 
severe valvular lesions, intracardiac shunt 
lesions from the study. Patients who did not 
consent were not included in the study. 
 
2.2 Echocardiograms 
 
Transthoracic echocardiograms were done using 
a Philips iE33 echo machine by an experienced 
cardiologist along with 3 lead ECG. 
Echocardiographic examinations were performed 
in the left lateral decubitus position in the patients 
after 20-30 minutes of rest during a stable and 
quiet respiration period using a 1 - 5 MHz 
transducer. Subjects with poor 
echocardiographic windows were excluded from 
the analysis. Echocardiographic parameters 
were measured using standard views and 
techniques according to the American Society of 
Echocardiography recommendations. Mitral 
inflow and LV outflow doppler were obtained for 
every patient. Using Simpson’s method, left 
ventricular end-diastolic and end-systolic 
diameters were measured and LV ejection 
fraction (EF) was calculated. The echo data were 
collected in the form of DICOM files. Doppler 
images of the blood flow were then taken and 
MCOT and LVET measurements were marked 
by an independent cardiologist. We collected 
data for calculation of the MCOT and LVET over 
3 consecutive beats, the values of which were 
averaged and used for calculations. 
 
MPI was calculated using the formula:  
 
MPI = (MCOT - LVET) / LVET 
 

2.3 BCG recording and evaluation 
 
For BCG data collection and recording, a novel, 
non-invasive device - Dozee™, (Turtle Shell 
Technologies Pvt. Ltd., Bangalore) was used. 
This device is a thin sheet having 6 pairs of 
polyvinylidene fluoride (PVDF) based 
vibroacoustic piezoelectric sensors, 3 sensing 
zones and sampling rate ability of up to 1000 Hz. 
The heart signal in a BCG is in between 1Hz to  
25Hz hence the signal with sampling more than 
50 per second can be used for the study [24,25]. 
We limited the sampling rate for this study to 
500Hz. The device is connected to an external 

component which includes a data storage 
module, IC chips and a Wi-Fi module within it. 
The data was uploaded onto a cloud server for 
further offline evaluation. 

 
This device was placed beneath the patient on 
the echocardiogram table. The timestamps of the 
BCG data and echocardiograms were 
synchronized. 3 simultaneous beats 
synchronized with the TTE were also used in the 
BCG for the calculation of the MPI. 
 

2.4 Phase I 
 

The collection of the data was divided into two 
phases. In phase I, 25 subjects were enrolled, to 
compare mitral and aortic valve motion on the 
BCG to that of an echocardiogram. The raw BCG 
signal was processed using the algorithm 
explained by Saran et al.,[26] to identify the 
centre peak (J-wave) of a BCG waveform. Using 
the identified J-wave, other characteristic BCG 
waves (G, H, I, K, L) were identified as shown in 
Fig. 1.  
 

The time interval between H wave and K wave 
indicates LVET and the time interval between the 
G wave and L wave indicates the MCOT 
(Supplement 2 for further information). A 
comparison of MCOT and LVET calculated using 
BCG signal and echocardiogram is shown in  
Fig. 2. 
 

2.5 Phase II 
 
In the second phase, an independent investigator 
blinded to the echocardiogram data marked BCG 
signal based on the findings from phase I. The 
same beats were used to mark MCOT and LVET 
on the TTE and BCG. The BCG values were also 
averaged for three consecutive heartbeats and 
were used to compare it with the values 
measured using the TTE. 
 

2.6 Statistics 
 

Statistical analysis was conducted using python 
library (numpy and scipy). All p-values were two-
sided and ɑ = 0.01. Pearson’s correlation 
coefficient was used to find the relation between 
the values obtained from TTE and BCG. The 
correlation calculated was absolute, no threshold 
of acceptable error was ignored when calculating 
it. Bland-Altman plot was used to measure the 
agreement between MPI from BCG and 
echocardiogram. We also validated the result in 
the predetermined subgroups of reduced EF (< 
50) and normal EF (>= 50).  
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Fig. 1. Ballistogram signals - raw and model template obtained after processing. (A) Raw 
ballistocardiogram signal, (B) Systolic waveform type 1 (C) Systolic waveform type 2 

 

 
 

Fig. 2. TTE signal overlapped with simultaneous BCG trace for a cardiac cycle 
 

2.7 Automation 
 
We automated the process of filtering the BCG 
signal, identifying the waveform of highest 
confidence and measuring MCOT and LVET by 
building AI models by using unsupervised 
machine learning algorithms for pattern detection 
and heuristics. The results obtained from the 
automated calculation were then compared with 
the results obtained from the manual MPI 
detection via TTE and BCG using Pearson’s 
correlation coefficient. Patients were chosen 

randomly for the validation cohort for the 
validation of the automation algorithm. This has 
been explained in detail. (Supplement 3 for 
further information).  

 
3. RESULTS 
 

Two hundred seventy-four male patients (age: 
52±12.5 years) were enrolled in the study. We 
excluded 124 patients from the final cohort for a 
variety of reasons, the most common one being 
poor TTE windows (98%). The BCG readings in 
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those patients who were excluded for poor 
echocardiographic windows were good and no 
artifacts were present in them. Recordings from 
150 subjects qualified for analysis. The inclusion 
and rejection of these patients is summarized in 
Fig. 3. 
 

3.1 Correlation between MPI Calculated 
via TTE and MPI Calculated via BCG 

 
The mean MPI calculated using the TTE was 
0.456 while the MPI calculated using the BCG 
was 0.448. Correlation coefficient values of MPI 
acquired through both methods showed a 
significant positive correlation of 0.766 
(P<0.00001, 99% CI [0.663, 0.84]) signifying a 
strong linear relationship. Similarly, MCOT and 
LVET time intervals values were also significantly 

positively correlated. The complete detailed 
results of correlation coefficients mean absolute 
error and its standard deviations for all the 
subjects and in subgroups with reduced EF and 
normal EF are given in Table 1.  
 
There was a positive correlation in the 
predetermined subgroups of subjects with 
reduced EF (<50%) and subjects with normal EF 
(>=50%) with the MPI derived from the TTE.  
 
Positive linear correlation between the values of 
the STI as derived by BCG and TTE are noted 
(Fig. 4). 
 
The Bland Altman plot also showcases the 
strong degree of agreement between the 2 
methods in calculating the MPI (Fig. 5). 

 

 
 

Figure 3. Flowchart of subjects enrolled for the study 
 

Table 1. Results over all subjects and different subgroups for values obtained from TTE and 
BCG 

 

STI Pearson's R P-value 99% CI MAE SD 
All subjects (N = 150) 
MPI 
MCOT 
LVET 

0.766 
0.682 
0.685 

P<0.00 
P<0.00 
P<0.00 

[0.691, 0.824] 
[0.586, 0.759] 
[0.59, 0.761] 

0.075 
28 ms 
21 ms 

0.068 
19 ms 
15 ms 

Reduced Ejection Fraction (N = 50) 
MPI 
MCOT 
LVET 

0.628 
0.774 
0.710 

P<0.00 
P<0.00 
P<0.00 

[0.424, 0.771] 
[0.632, 0.865] 
[0.538, 0.825] 

0.084 
27 ms 
21 ms 

0.076 
19 ms 
16 ms 

Normal Ejection Fraction (N = 100) 
MPI 
MCOT 
LVET 

0.615 
0.592 
0.586 

P<0.00 
P<0.00 
P<0.00 

[0.477, 0.723] 
[0.448, 0.706 
[0.441, 0.701] 

0.067 
28 ms 
21 ms 

0.057 
18 ms 
15 ms 
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Fig. 4. Plots showing strong positive correlation between MCOT, LVET and MPI calculated 
manually from TTE and BCG for 150 subjects 

 

 
 

Fig. 5. Bland-Altman plot of comparison between MPI TTE & MPI BCG 
 

Table 2. Relation between values predicted by AI model and values found from TTE and 
manual BCG 

 
STI Pearson's R P-value MAE SD 
BCG AI Predictions vs TTE values (N = 30)  
MPI 
MCOT 
LVET 

0.54 
0.60 
0.72 

P<0.01 
P<0.00 
P<0.00 

0.01 
20 ms 
14 ms 

0.08 
15 ms 
13 ms 

BCG AI Predictions vs Manual BCG values (N = 30)  
MPI 
MCOT 
LVET 

0.34 
0.44 
0.43 

P<0.10 
P<0.10 
P<0.10 

0.084 
29 ms 
21 ms 

0.076 
17 ms 
15 ms 
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3.2 Correlation between MPI Calculated 
via TTE and MPI Calculated via AI 
Model on BCG 

 

An AI model that was trained with the data for 24 
subjects, attempted to mark the parameters for 
the remaining 126 subjects. It could only mark 
MCOT and LVET for 30 of these subjects whose 
data satisfied the high confidence specifications 
set for the model, and the remaining 96 subjects 
were rejected as the BCG signals did not meet 
the confidence specifications set for the model.  
For the 30 subjects, there was a linear 
correlation of 0.54 (P<0.01) with the values of the 
MPI as obtained by the TTE. The results have 
been summarized in Table 2 and explained in 
detail in supplement 3. 
 

4. DISCUSSION 
 
This is the first study to demonstrate the utility of 
a non-contact novel BCG device in the 
calculation of systolic time intervals with potential 
for automated detection. There is linear 
correlation with the values of the MPI as 
calculated by a traditional TTE. The automated 
calculation of values correlates to the calculated 
BCG derived values of MPI, albeit needing 
additional numbers for better accuracy. 
 
These results demonstrate that manual BCG is 
an effective method to measure LVET, MCOT 
and MPI. Portability, cost effectiveness and ease 
of use associated with BCG make it a promising 
modality to acquire MPI values on a longitudinal 
basis even for patients at home or in cardiac 
rehabilitation. The promise of summed values for 
MPI offers a new novel avenue to evaluate 
patients’ functional cardiac status. It also brings a 
functional cardiac evaluation parameter outside 
the hospital and allows for potential use by the 
largely non-specialist workforce. The challenge 
of poor echocardiographic windows which may 
limit the calculation of STI do not seem to affect 
the BCG which is independent of the thoracic 
response to ultrasound interrogation. The 
calculation of the MCOT and the LVET are done 
on different echo windows which render the 
accuracy of the MPI in irregular arrhythmias 
lower. The BCG does not suffer from this 
limitation and may perhaps be more accurate 
since the calculated MPI is derived from the 
same cardiac cycle. 
 
Various studies have attempted to calculate 
heart rate, myocardial performance index, LVET, 
autonomic responses using accelerometers 

usually attached at the chest region or implanted 
in fabric garments.[27,28] Rienzo et al., 
measured RR interval and LVET beat by beat 
basis from ECG and seismocardiogram 
signals.[28] Another study assessed myocardial 
performance index in ischemic heart disease by 
analyzing left ventricular systolic and diastolic 
parameters at rest and after exercise using 2D 
echo and accelerometer device placed on the 
sternum.[29] Our device is able to do so just by 
placing it underneath the chest region even 
below the mattress. This removes artifacts at the 
device tissue interface allowing for clearer 
recordings. Since the device can be pre-placed 
beneath a mattress, the patient needs to only lie 
on the device post activity to be able to record 
the STI, whereas in each of the other devices, 
there is potential artifact secondary to the device 
tissue interface in addition to the challenges of 
increased chest wall motion due to the use of 
respiratory muscles in activity and early recovery. 
Since the cardiac signal activity in our device has 
a specific frequency and there is a conscious use 
of a band-pass filter tuned to optimize cardiac 
motion, these challenges are minimal. 
 
The large volume of data that can potentially be 
generated with the use of this device presents a 
logistical problem for calculation of MPI. Manual 
calculation is possible but may not be optimal 
during long term monitoring for patients. 
Therefore, there is a need for automated 
detection of the MPI in the patients. Our initial 
attempts at automation are good but not very 
impressive, but is hypothesis generating for the 
concept. Additional data points, more clean BCG 
data collected under controlled environment and 
more patients may be needed for validation of 
the same as well as generation of data trends for 
interpretation and clinical use. The technical 
concept of using automated beat and interval 
detection has been used to generate trends in 
other forms of continuous monitoring and does 
not represent a novel concept in the handling of 
big data in real-time. The need for a more 
accurate and reproducible algorithm however 
remains and is one of the challenges for the 
future. Majority studies use unsupervised 
machine learning to cluster the events detected 
by seismocardiogram or ballistocardiogram 
based devices built on their waveforms [30–32]. 
Similar approach has been applied in our present 
and past studies to cluster the events using 
machine learning.[10] 

 
The scope of the study is tempered by its 
limitations. The present study excluded women 
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purely out of concern for good echocardiographic 
windows. This is an important subset that needs 
evaluation in studies. Evaluation of the device in 
individuals with higher BMI shall also be useful to 
determine its versatility when it comes to body 
habitus. Similar correlation studies for paced 
beats may also be useful in the evaluation of the 
functional effects of cardiac resynchronization 
and selective conduction tissue capture. It may 
be a real time evaluation aide intraoperatively 
during the procedure thereby providing 
instantaneous feedback. The body and probe 
movements during simultaneous 
echocardiography led to artefacts on BCG which 
could be the reason for the marginally lower 
correlation coefficient between BCG and echo of 
+0.766 and the reason of such low detection rate 
by the AI model. The artefacts could be 
minimized if the procedure is conducted in a 
controlled environment and the subject is lying 
still on the bed without any disturbances around. 
  
4. CONCLUSION 
 

BCG derived manual and automated MPI 
correlates well with TTE derived MPI in a variety 
of EF fraction subgroups. Automated calculation 
algorithms for MPI derived from BCG remain a 
work under progress.  
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detail and informed written consent was taken for 
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APPENDIX 
 

Mitral inflow and left ventricular outflow time intervals were used to measure left ventricular 
ejection time (LVET) and mitral valve closing opening time (MCOT). Supplement 
the mcot and LVET phases marked in a single echocardiogram dicom loop captured as part of 
the study. In this case MCOT is 409 ms and LVET is 265 ms.  

 
 

. One of the 2D Doppler Echocardiogram Dicom loops captured during the stu

BCG data from Dozee (shown in use in supplement Fig. A2 below), was processed through an 
algorithm to identify the heart beats in the ballistocardiogram waves. This algorithm is already 
explained in another paper (Saran et al) to identify J-waves from the BCG data.[26]

 
 

Fig. A2. Dozee device in use 

Around the beats identified, characteristic waves (G, H, K and L) were identified manually over 
25 subjects by synchronizing time from echocardiograms and BCG signals and observing 
repeating patterns over multiple beats and over multiple subjects. These waves, shown in Fig
A1, are formed by systolic and diastolic events of the heart, like opening and closing of valves, 
contraction and relaxation of heart chambers. In ballistocardiogram G wave
downward deflection, represents the time when the mitral valve closes and the systole starts 
and subsequent isovolumetric contraction begins.[20,33] H wave is an upward deflection, which 
occurs towards or after the end of the first heart sound and correlates with the opening of the 
aortic valve. K wave represents the time when the aortic valve closes, and isovolumetric 
relaxation begins. The position of the K wave is variable in different identified waveforms. L 
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Mitral inflow and left ventricular outflow time intervals were used to measure left ventricular 
ejection time (LVET) and mitral valve closing opening time (MCOT). Supplement Fig. A1 shows 
the mcot and LVET phases marked in a single echocardiogram dicom loop captured as part of 
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wave marks the time when the Mitral Valve opens, and the diastole begins.[33] Furthermore, 
these waves and the templates generated (Fig. A1) are used in the next part of the pipeline to 
identify points that mark the stages in a heartbeat - closing and opening of the mitral valves and 
the aortic valves - which help in identifying the duration of the components used in calculating 
the MPI values for each beat. 
  

3. Creation of the automated algorithm for the calculation of STI  
 
We built AI models by using unsupervised machine learning algorithms for pattern detection 
and heuristics, by taking 24 out of 150 patients randomly as reference subjects. The algorithm 
identified the respective points to mark MCOT and LVET on these 24 subjects’ BCG tracings 
using the values marked by the cardiologist on the TTE. This was then further used to 
automatically identify the MCOT and LVET on the remaining 126 subjects. 96/126 subjects 
were rejected by the model because of unclear data or low confidence data allowing us to test 
the model on 30/150 subjects (Fig. A3). 

  

 
 

Fig. A3. MCOT and LVET marking on BCG signal by the AI model for the same subject 

 
4. Correlation of the automated algorithm for the calculation of STI with that of the 

manual detection of MPI via BCG and TTE 
 
The Pearson correlation coefficients between MPI, MCOT and LVET derived from the 
automated BCG model and TTE were 0.54 (p < 0.01), 0.6 (p < 0.001) and 0.72 (p < 0.0001) 
respectively. Detailed results given in Table 2, which also compares the predicted values by the 
AI model and the independent investigator. Supplement Fig. A3 shows the MCOT and LVET 
markings on BCG signals by the AI model and manually by the independent investigator. 
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