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ABSTRACT 
 

This research presents a one-dimensional Convolutional Neural Network (CNN) architecture for 
compressional and shear sonic logs prediction to identify potential sealing rock formation for 
successful carbon capture and storage (CCS) projects. Sonic logs are useful geophysical tools in 
the geomechanical assessment of rock layers and aid in the delineation of potential confinement 
and containment formations for CO2 storage in depleted reservoirs. However, these logs are usually 
missing in old depleted fields due to the cost of acquisition, cycle skipping, or poor borehole 
condition. Therefore, a deep learning approach is proposed to predict compressional and shear 
sonic logs, simultaneously. Utilizing open-source data from the decommissioned Volve field in the 
Norwegian North Sea, Log1DNet, a fully-connected CNN model was employed to capture the trend 
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of sonic log responses. A total dataset of 47,041 is gathered from five wells within the 15/9 block of 
the field (15/9-F-1A, 15/9-F-1B, 15/9-F-11A, 15/9-F-11T2, and 15/9-F-4). Wells 15/9-F-1A, 15/9-F-
1B and 15/9-F-11A were used to train and validate the model while wells 15/9-F-11T2 and 15/9-F-4 
served as the test wells, achieving an accuracy of up to 90% when compared with ground truth 
data. By analyzing various zonation behaviours, the detected zones were leveraged to comprehend 
the findings of the neural network prediction and delineate zones that can serve as a potential seal 
for CO2 storage. This approach enables a faster CCS evaluation workflow characterized by low cost 
and high accuracy, offering significant benefits for the effective implementation of CCS initiatives. 
 

 
Keywords: Sonic logs; convolutional neural network; seal; carbon storage. 
 

1. INTRODUCTION 
 

The presence of confinement layers (seals) is a 
crucial prerequisite in ensuring a sustainable 
CCS project [1]. Over the years, CCS themes 
have gained much attention in the industry. In a 
bid to attain net-zero emissions, various 
companies and research institutions have been 
devising strategies to reduce the concentration of 
CO2 in the atmosphere by safely containing it in 
geologic formations. Instead of abandoning oil-
depleted fields, these fields could potentially be 
used as carbon capture and storage sites, 
offering a feasible solution for geological carbon 
storage [2,3]. As such, impermeable seal 
formations are essential to facilitate the 
entrapment and confinement of CO2 injected into 
depleted reservoirs where they are safely 
contained. Geophysical logs, like compressional 
and shear sonic logs, can be employed to 
identify potential seal formations. 
 

Sonic logs are geophysical logs that measure the 
slowness or travel time of waves as they pass 
through geologic formations that a vital role in 
delineating targeted containment and 
confinement zones for CO2 storage. However, 
the non-availability or missing sections of sonic 
logs in the old depleted fields due to the cost of 
log acquisition, altered zone arrivals, adverse 
borehole conditions or cycle skipping pose a 
problem. Empirical solutions using equations 
such as the Wyllie time average [4] and Raymer-
Hunt [5] are plagued by localization problems, 
require unexplainable constants, and can be 
unreliable in uncompacted formations, limiting it 
to specific geologic settings. To address this, 
data-driven technological approaches are 
leveraged to generate synthetic sonic responses. 
This research aims to develop a deep learning 
methodology for predicting sonic logs to identify 
potential confinement formations for CO2 storage 
[6]. 
 

 Various traditional machine learning methods 
such as Genetic Algorithms Technique [7], Least 

Square Regression [8], Least Square Support 
Vector Machine [9], Random Forest and Linear 
Regression [10], and Gradient Boost Regressor 
[11], have been proposed to synthesize sonic 
logs. Deep learning approaches such as Artificial 
Neural Networks [12,13], Back Propagation 
Neural Networks [14], Convolutional Neural 
Networks and Recurrent Neural Networks [15], 
and Adaptive Neuro-Fuzzy Inference System [9], 
have also been used to generate synthetic sonic 
logs, achieving results greater than 80% 
accuracy in most cases. However, these studies 
synthesized either compressional logs using 
shear logs with acquired and/or calculated logs 
as input features, or combined compressional 
logs with acquired and/or calculated log variables 
to forecast shear logs. While this approach helps 
train the model to be more intelligent at 
predicting a variable, this approach may not be 
robust in the case of fields with limited logs. Our 
study considers the case of a limited log by using 
only the triple-combo logs such as gamma ray, 
resistivity, bulk density, and neutron porosity, as 
inputs into the proposed convolutional neural 
networks (CNN) architecture to predict the sonic 
variables, simultaneously.  

 
This approach proved to be robust for predicting 
the sonic logs with high generalization strength, 
giving promising results when tested on new data. 
Subsequently, the predicted logs are interpreted 
to identify potential confinement zones for CO2 
storage. The use of this intelligent system 
approach will provide tools that facilitate elastic 
logs and reservoir properties prediction for faster 
CCS evaluation studies. Also, it will provide 
credible prediction results better than the 
empirical approach. The cost of acquiring sonic 
logs will be minimal, saving the company on 
expenditure costs, lowering computing costs, 
increasing computational accuracy, and 
removing time constrain, which will further 
advance the drive for net-zero policy and clean 
energy solutions. We highlight our main 
contributions in the following: 
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1. This work considers a limited-log scenario 
where only gamma ray, resistivity, bulk 
density, and neutron porosity logs are used 
to predict sonic logs. 

2. We propose a one-dimensional CNN 
architecture called Log1DNet to predict 
compressional and shear sonic logs, 
simultaneously. 

3. The network’s prediction is used                         
to identify seal formations that                         
can potentially confine CO2 in depleted 
reservoirs. 

 
This paper is organized as follows: Section 2 
discusses the geology of the study area. Section 
3 presents the data and method used and the 
architecture of Log1DNet. Section 4 reports the 
performance of the model and how it was used to 
identify seal formations that can potentially 
confine CO2. 
 

2. GEOLOGY AND STRATIGRAPHY OF 
THE STUDY AREA 

 
The data used for this study is the open-source 
data from the Volve field. The field is located in 
Block 15/9 in the southern part of the Norwegian 
North Sea, running at a water depth of around 

80m. It lies about 200km west of Stavanger, 8km 
from Sleipner Ost Field, and bound to the East 
by Loke gas field (Fig. 1). The field was formed 
during the Jurassic period by the collapse of 
adjacent salt ridges [16]. Although, a well was 
initially drilled close to the crest of the 
structure to test the potential of the Paleocene 
Heimdal clastic formations, but the 4-way dip 
closure of the middle Jurassic Hugin Sandstone 
formations served as the reservoir where oil was 
produced. The well log data was interpreted to 
consist of the following stratigraphic section: the 
muddy sandstone of the Paleocene Heimdal 
formation, the Upper Cretaceous Ekofisk marl 
and limestone, the Upper Jurassic Draupine and 
Heather formations which are claystone, and the 
Middle Jurassic Hugin formation which is 
sandstone with minor clay and limestone [17]. 
The Callovian age Hugin sandstone formation is 
said to be deposited in near-shore, shallow marine 
environments which are interbedded by coal, 
claystone shale, and carbonate deposits. The 
trapping mechanism in the area North Sea is 
either stratigraphic, structural, or a combination of 
both. The anticline structures are highly faulted 
due to salt tectonics [18] and serve as primary 
faults that trend in the North East – South West 
and North West – South East directions. 

  

 
 

Fig. 1. Location of volve field within the block 15/9 North Sea (Wong et al. [19]) 
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Fig. 2. A generalized stratigraphic column for the Volve field (after Al Ghaithi [15]) 
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Fig. 3. Plot showing well locations 
 

3. METHODOLOGY  
 

3.1 Data Overview 
 
The Volve field is characterized by a Jurassic 
sandstone reservoir with highly recoverable 
crude oil. Oil was discovered in the field in 1993, 
production started in 2008 and ended eight years 
later. To foster the research of machine learning 
applications in geoscience, the dataset was 
made available for public use in 2018, two years 
after production ended. This study considered 
only five wells within the 15/9 block, namely 15/9-
F-1A, 15/9-F-1B, 15/9-F-11A, 15/9-F-11T2, and 
15/9-F-4. All the wells have both DTC 
(Compressional) and DTS (Shear) sonic logs 
alongside the Gamma ray (GR), Resistivity (RT), 
Neutron Porosity (NPHI), and Bulk density 
(RHOB) logs (Table 1). The data includes 
measured depth ranging from about 2582.9m – 
4512.9m. 
 
Fig. 3 shows the location of the wells. This will 
allow the understanding of the geo-distribution of 
the wells and how to carefully select data for 
model training. Coordinate locations of three 
wells that are available in the original LAS file 
were retrieved and displayed on a base map to 
determine the position of the wells relative to 

each other. Fig. 3 shows that wells 15/9-F-1A 
and 15/9-F-1B were drilled close to each other, 
while wells 15/9-F-11A were somewhat drilled at 
a distance away. The data splitting process is 
simple. Data points from wells 15/9-F-1A, 15/9-F-
1B, and 15/9-F-11A were combined, resulting in 
a total of 24,111 data points. Of these, 70%                   
of the data points were randomly                               
sampled for model training, while the remaining 
30% served as a holdout set for model  
validation. The 22,930 data points from wells 
15/9-F-11T2 and 15/9-F-4 were used to blind test 
the model. 
 

3.2 Feature Selection 
 
Feature selection is a critical step that integrates 
statistical validation and domain knowledge to 
identify and select important features for machine 
learning models. Statistical validation requires 
that the features employed for model training 
exhibit a strong correlation with the target 
variable(s). Some features have weak or 
negligible relationships with the target(s), 
therefore their statistical contribution to the 
modelling of an accurate predictor function will 
be minimal. In such cases, retaining these 
features as inputs into the model is not 
advisable. 
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Table 1. Training and validation wells along with the available well log attributes  
(X: means it is available) 

 

DATA WELL GR RHOB NPHI RT DTC DTS 

Training F-11A X X X X X X 
Training F-1A X X X X X X 
Training F-1B X X X X X X 
Blind Test F-11T2 X X X X X X 
Blind Test F4 X X X X X X 

 

 
 

Fig. 4. Correlation heatmap (A) Chatterjee; and (B) Pearson methods of correlation between 
features and target of well log attributes 

 
In this study, not all log curves in the original data 
will have an impact on the accurate prediction of 
DTC and DTS. To ascertain this, a correlation 
matrix between other log attributes and sonic 
logs was initially computed using Pearson’s 
linear method, with RT and RHOB indicating a 
weak relationship with both DTC and DTS. From 
a domain knowledge perspective, sonic velocity 
is a function of how dense or compacted a 
formation is, while the resistivity log and the 
compressional sonic track each other in wet 
shallow clastic rocks [20]. The relationship 
between well attributes often exhibits                             
non-linear patterns, and linear methods like 
Pearson's correlation may fail to capture these 
complexities [21], resulting in weak 
interpretations. 
 
To validate claims based on domain knowledge 
and accurately capture non-linear relationships, a 
non-linear method such as Chatterjee correlation 
[22] was employed. This approach allows for a 
more comprehensive modelling of all input 
features to establish strong relationships with the 
sonic logs, as shown in Fig. 4. In this study, the 
GR, RT, NPHI, and RHOB logs were used as 
input features in the deep learning model. 

3.3 Data Processing 
 
This is the most important part of the workflow 
because, without it, models will not scale well. 
First, the data was processed and cleaned of 
missing values by dropping all the observations 
where at least one of the feature values was 
missing. Also, features such as the RT were 
projected from linear scale to logarithmic scale. 
Since RT logs are recorded as a logarithmic 
response, this transformation enables the model 
to simulate subsurface operations more 
accurately. Subsequently, the data were 
normalized to mitigate bias during training, as 
some features possess larger or smaller ranges 
than others. For instance, RT has a wide range 
of 0.2 to 2000 while NPHI has small value ranges 
of -0.15 to 0.45. The objective is to make the 
data attain a state of normal distribution by 
applying the data normalization technique, 
ensuring that each feature contributes equally to 
model training. 
 
To achieve this, the Yeo-Johnson’s Power 
Transformer algorithm was used to normalize the 
data. Power transforms are a family of 
parametric transformations that are applied 

A. B. 



 
 
 
 

Atolagbe and Akindele; Asian J. Geol. Res., vol. 7, no. 3, pp. 232-244, 2024; Article no.AJOGER.121694 
 
 

 
238 

 

feature-wise to make data more Gaussian-like 
(bell shape) [23]. Yeo-Johnson's method 
supports both positive and negative data and 
applies unit-variance normalization to the 
transformed data. This normalization technique 
enhances the model's performance by            
ensuring that each feature is appropriately scaled 
and contributes effectively to the learning 
process. 

 
3.4 Modelling  
 
3.4.1 Architecture 
 
Neural Networks are deep learning algorithms 
that simulate the processes of the human brain. 
The algorithm incorporates a system that 
contains neurons or nodes that have a collective 
contribution to a prediction process. A 
convolutional neural network (CNN) is a type of 
neural network used for image recognition and 
object detection processes and was specifically 
designed to process pixel data. Building a CNN 
architecture follows a sequential order, hence 
making it a suitable candidate for handling 
sequential data like well log data. Additionally, 
CNNs require very little data processing as 
compared to classical machine learning 
algorithms. However, calibrating a CNN model 
on two-dimensional data such as well log is 

feasible by reshaping the data to include an extra 
(third) dimension. 
 
A typical CNN architecture starts with the input 
layers that accept the input features followed by 
kernel filters called convolutional (layers) kernels 
with the size that controls the length of the 
convolution windows. The kernel matrix 
convolves with the spatial input data, performs 
the dot product with the sub-region of the data, 
and gets the output as the matrix of dot products 
which are the feature maps. These feature maps 
help to detect and extract the patterns contained 
in each input feature. For instance, a feature map 
produced may detect the patterns in the RT, 
while another feature map contains information 
about the pattern found in the RHOB that will 
help in predicting DTC and DTS accurately. The 
tensor results from all these feature maps are 
squished and aggregated using an activation 
function. The non-linear Rectified Linear Unit 
(ReLU) activation function is a good choice to 
introduce non-linearity into the network and 
reduce errors while training the model. The result 
from this layer is passed into another 
convolutional layer or pooling layer. If passed 
into another convolutional layer, more feature 
maps will be produced, hence more pattern 
extraction. However, this may require higher 
computational power because of the increase in 
the size of information. 

 

 
 
 

 
 

Fig. 5. The proposed Log1DNet architecture 
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Pooling layers usually come after a convolutional 
layer in a bid to reduce the spatial dimensionality 
of the data produced from the previous layer. It 
helps in decreasing the required computational 
power for the data processing by the method of 
dimensionality reduction. Its function is to extract 
specific information in the data by suppressing 
the noise in the data, therefore helping the model 
learn salient patterns to achieve good accuracy. 
The result from the pooling or convolutional layer 
is flattened into a vector and passed into a dense 
layer. While the nodes in the convolutional layers 
are sparsely connected, the dense layer has all 
its nodes connected to form a fully connected 
layer. At intervals between dense layers, drop-
out layers may be included to control the 
regularization strength of the model. By 
regularization, the model is less prone to 
overfitting and able to generalize well on unseen 
data. 
 
For this study, Log1DNet, a lightweight one-
dimensional CNN architecture, is designed for a 
multi-label prediction, that is, predicts both DTC 
and DTS simultaneously. Fig. 5 shows the 
architecture of Log1DNet. It consists of four 
sequential 1D convolutional layers, a flatten 

layer, a fully connected layer and an output layer. 
Each convolutional layer in Log1DNet performs a 
one-dimensional convolution (Conv1D) to extract 
features from the input well log attributes (GR, 
NPHI, RT and NPHI). This is followed by batch 
normalization (BatchNorm1D) to rescale and 
normalize these features, enabling faster and 
more stable training. A non-linear activation 
function (LeakyReLU) is then applied to 
introduce non-linearity into the network, allowing 
it to learn complex patterns from the data. 
Finally, an average pooling layer (AvgPool1D) 
reduces the spatial dimensions of the features, 
helping to downsample and retain the most 
salient information. The number of output 
channels for each convolutional layer increases 
progressively by a factor twice the batch size. 
The sparse outputs from the convolutional layers 
are then flattened and reshaped into a one-
dimensional vector (Flatten), which is fed into a 
fully connected layer (Linear). This layer maps 
the high-dimensional feature space to a lower-
dimensional output space. The output layer 
(Output) has two nodes, with each node 
responsible for the DTC and DTS output 
prediction. 
 

 

 
 

 
 

Fig. 6. Training and validation performance 
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3.4.2 Model training 
 
The model was trained and tested on a Google 
Colab environment that offers free access to a 
Tesla T4 GPU with up to 16GB of memory. The 
model was trained over 300 epochs with a batch 
size of 256, using the ADAM as the optimizer. 
The optimizer step was controlled by introducing 
a small learning rate value of 1×10-3 and a weight 
decay of 1×10-3 to regularize the model. The 
parameters combined will help to adjust the 
model weights during the backpropagation 
procedure in a bid to attain optimal prediction 
results. It is worthy to note that the model was 
also tested on CPU to validate its lightweight 
nature. 

 
3.5 Evaluation Metrics 
 
The validation and error metrics used to measure 
the model performance include the coefficient of 
determination (R2) which measures the amount 
of explainable variance along an axis and root 
mean squared error (RMSE) which measures the 
standard deviation of the errors a model makes 
in its predictions. Where n is the number of 
observations, i is the index number, y is the true 

value, 𝑦  is the predicted value, and    is the 
mean value. 
 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦�̂�)

2

∑(𝑦𝑖 − 𝜇)2
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

 
4. RESULTS AND DISCUSSION 
 
4.1 Model Results of Sonic 
 
Analysis based on the lithology observed in the 
stratigraphic column (Fig. 2) revealed four 
distinct zones believed to have influenced the 
model's behavior [15]. For example, Fig. 7 shows 
that well 15/9-F-11A (the deepest penetrating 
well after 15/9-F-11T2) at about a depth of 
2583m – 2792m was identified to be a sandstone 

or muddy sandstone interbedded with claystone, 
limestone, and marl was identified at 2792m – 
3510m, claystone or shale sequence at 3510m – 
3857m, and lastly is a clean sandstone with 
some clay intervals (at a measured depth   
greater than 3857m) which is the target reservoir 
[15]. 
 
The model demonstrated high precision by 
effectively capturing the trend of the sonic logs in 
comparison with the measured values. Based on 
the geological zones, the predictor function 
demonstrated accuracy in predicting both 
compressional and shear sonic logs across all 
zones, especially in the carbonate sequence. As 
shown in Table 2, the model achieved up to 
92.7% for DTC and 77.8% for DTS in test well 
15/9-F11T2. However, the prediction results for 
the shear log indicated discrepancies, particularly 
in intervals with high clay or shale content, which 
were both over-predicted and under-predicted. 
These discrepancies may arise from variations in 
mineral composition. Despite demonstrating an 
understanding of the log trends, the overall fair 
performance (~54% accuracy) in test well 15/9-
F-4 suggests potential issues arising from these 
discrepancies. As such, the challenges in 
accurately predicting sonic logs in intervals with 
high clay or shale content could have contributed 
to the lower accuracy observed in this particular 
test well. 
 
However, we believe the preprocessing workflow 
aided an overall improvement in the             
prediction results. Specifically, the logarithmic 
transformation of the RT log gave a spike in 
accuracy and low error rate as compared to 
using the raw values. Given that well log data are 
obtained from a complex and heterogeneous 
system, they are inherently prone to noise. Deep 
learning models, including CNNs, are sensitive to 
such noise in well log attributes. As such, we 
trained the model over a few epochs to mitigate 
the risk of overfitting by allowing the model to 
focus only on salient information while filtering 
out noise, thus facilitating good results. 

 
Table 2. Performance of the CNN model on each well 

 

DATA WELL R2 (%) RMSE (us/ft) 

DTC DTS DTC DTS 

Training F-11A 95.2 91.1 3.22 12.68 
Training F-1A 95.5 87.7 2.82 10.15 
Training F-1B 90.8 81.1 2.44 7.47 
Blind Test F-11T2 92.7 77.8 3.61 16.23 
Blind Test F-4 84.1 53.6 4.27 16.47 
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Furthermore, the training data was sampled from 
the shallow and deep sequence (up to 3723m), 
nonetheless, the model yielded a very high 
accuracy on testing with data points even from 
the deepest penetrating well (up to 4512m) that 
was not initially included in the training set as 
seen Fig. 8. This demonstrates the robustness of 
the model in predicting sonic logs from zones or 
lithologies that were not sampled as part of the 
training data. The model reveals a consistency in 
the geologic response of the retentive layers, 
whose results are then used to identify the 
potential CO2 confinement zones based on the 
sonic response. 
 

4.2 Potential Seal Formations for CO2 

Confinement 
 
There is a direct relationship between the 
strength of seal rocks and sonic wave transit. 
The idea behind identifying a potential CO2 
confinement zone is in the degree of compaction 

with response to the velocity of sonic waves as 
they travel through formations. A denser and 
more compacted formation such as shale or 
claystone will allow a faster transit of sonic 
waves compared to sandstone, which is less 
compacted. Zones of fast travel show significant 
strength and are potential confinement zones, 
while intervals of slow travel are identified as 
containment zones. 
 
In the Volve field, a potential CO2 storage zone 
has been identified to be within the Hugin 
formation at about an average depth of 2800m – 
3200m TVDSS [18]. This is justified by the 
increase in sonic responses and the existence of 
a thick shale interval that caps the saline 
sandstone reservoir. The properties of good 
sealing rocks can be inferred from their 
thickness, lateral extensiveness, and 
stratigraphic continuity. The thickness of the 
Viking group shale varies between 40m - 189m 
and extends laterally across all the study wells. 

 

 
 

Fig. 7. Well log section showing the predicted and measured DTC and DTS in the identified 
zones in well 15/9-F-11A. Zone 1 is clay/muddy sandstone, Zone 2 is carbonate, Zone 3 is 

Shale/Claystone and Zone 4 is clean sandstone 
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Fig. 8. Plot showing the predicted and measured DTC and DTS in test well 15/9-F11T2, along 
with the identified seal formations (in red and blue) 

 
Furthermore, the major seal and storage 
formations exist at deeper depths, which is safe 
in terms of proximity to the surface. However, at 
a shallow depth of 2580m – 2800m, thick shale 
beds of the Heimdal formation (up to 40m in 
thickness) were also identified from the sonic 
response to show an overall fastness more than 
the deeper shale beds, indicating high 
confinement zones for CO2 storage. 
 

5. CONCLUSION AND RECOMMENDA-
TION 

 
Previously producing oil and gas fields that have 
been considered uneconomical, are a prime 
candidate for geological sequestration with the 

nature of these formations able to store oil and 
gas over a long period. Also existing over these 
formations are seals that prevent further 
migration of fluid to the surface. This study used 
a deep learning approach to model a multi-label 
prediction of compressional and shear sonic logs 
to account for estimation bias by empirical 
methods, which was further used to identify 
potential seal formations for CO2 storage in 
depleted reservoirs. 
 
From the sonic interpretation, two zones were 
identified at shallow and deep depths to be 
potential retention rocks for CO2 capture. This 
includes the thick claystone beds at shallow 
depths found in the Heimdal formation and the 
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thick shale of the Viking group with evidence of 
overall fastness in sonic transit. With this, CO2 in 
the atmosphere can be reduced, leading to a 
sustainable future. However, the integrity of 
these seal formations should be further 
investigated through fault seal analysis. This 
goes beyond the scope of the current study. 
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