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Abstract

In this study, we first characterize focal curves by examining the FLC-frame in three-dimensional Euclidean
space. We then derive the relationship between the curvatures of a curve and the focal curvatures. Finally,
we present some new conditions for curves with constant curvatures in E3.
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1 Backround on Flc-Frame

Consider the tridimensional Euclidean space E3 with inner product

〈·, ·〉 = dx2 + dy2 + dz2,
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where (x, y, z) ∈ E3 is a rectangular coordinate system. Consider the curve α : I → E3, which is differentiable
in the Euclidean 3-space and is defined on an open interval I. The Frenet frame is defined as follows [1]

t =
α′

‖ α′ ‖ , b =
α′ ∧ α′′

‖ α′ ∧ α′′ ‖ , n = b ∧ t, (1.1)

satisfying  t′n′
b′

 =‖ α′ ‖

 0 κ 0
−κ 0 τ
0 −τ 0

 tn
b

 . (1.2)

Here, κ and τ are differentiable functions defined on I, referred to as the curvature and torsion of α, respectively.
The vectors t, n and b represent the tangent, principal normal, and binormal vectors of α, respectively.

In addition to the Frenet frame, it is possible to establish other frame along a three-dimensional curve such as:
Bishop frame, q-frame, alternative frame and others [2, 3, 4]. Recently, Dede [5] introduced a newframe along a
polynomial space curve, called as Flc-frame. The computation of Flc-frame is easier than the Frenet frame and
has some advantages, such as (see [6]):

i) There are no singular points of order 1, that is, there is no t0 ∈ I such that α′′(t0) = 0, in the FLC frame,
whereas the Frenet frame exhibits irregular behavior at a first-order singular point.

ii) The chances of inflection points occurring, that is, points t0 ∈ I such that α(t0) ∧ α′′(t0) = 0, are lower
in the FLC frame than in the Frenet frame.

Discussion of the Flc-frame and its application to the tube surfaces can be found in [5], on geometry of focal
surfaces in [7], in the analysis of Smarandache ruled surfaces in [8].

Let α(t) be a polynomial space curve of degree n. The Flc-frame is given by

t =
α′

‖ α′ ‖ , D1 =
α′ ∧ α(n)

‖ α′ ∧ α(n) ‖
, D2 = D1 ∧ t, (1.3)

where the prime ’ indicates the differentiation with respect to t and the notation α(n) expresses the nth derivative
of the curve α with respect to t [5]. The new vectors D1 and D2 are called as binormal-like vector and normal-like
vector, respectively.

Calculations show that the derivatives of the Flc-frame satisfy [5]

 t′D′2
D′1

 =‖ α′ ‖

 0 d1 d2
−d1 0 d3
−d2 −d3 0

 t
D2

D1

 , (1.4)

where

d1 =

〈
α′ ∧ α′′, α′ ∧ α(n)

〉
‖ α′ ‖3‖ α′ ∧ α(n) ‖

, d2 =
det(α′′, α′, α(n))

‖ α′ ‖2‖ α′ ∧ α(n) ‖
, d3 =

det(α′, α′′, α(n))
〈
α′, α(n)

〉
‖ α′ ‖2‖ α′ ∧ α(n) ‖

(1.5)

are called the curvatures of the Flc-frame.

Corollary 1.1. If the degree of polynomial space curve is two, then the Flc-frame coincides with the Frenet
frame with curvatures d1 = κ, d2 = 0 and d3 = τ = 0 [6].
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A focal curve or generalized evolute is the geometric locus given by the centers of the osculating circles of a
given curve. With applications ranging from Dynamical Systems Theory to Surface Engineering [9], the focal
curve can be expressed in terms of the frame of the initial curve and in a parametrization the coefficients
called focal curvatures are obtained. These curves are studied in different spaces and frames, for example in
[10, 11, 12, 13, 14, 15]. Motivated by these, in this paper, we study the focal curves according Flc-frame in E3.

2 Focal Curves According Flc-Frame in E3

Let α : I → E3 be a regular space curve in the three-dimensional Euclidean space E3 with nonzero curvature κ
and torsion τ . The focal curve of α is the curve given by the equation

β(t) = α(t) + ϕ1(t)n(t) + ϕ2(t)b(t), (2.1)

where n is a principal unit normal vector field of α, b is a binormal unit vector field of α. The coefficients ϕ1(t)
and ϕ2(t) are smooth functions called focal curvatures of α [16].

In terms of the Flc-frame, the focal curve of α is given by

β(t) = α(t) + ϕ1(t)D2(t) + ϕ2(t)D1(t). (2.2)

Theorem 2.1. Consider a unit speed curve α : I → E3 and its corresponding focal curve β. Then,

β(s) = α(s) + e
−

∫ d1d3
d2

ds

[ ∫
e
∫ d1d3

d2
ds d3
d2
ds+ C

]
D2 (2.3)

+

{
1

d2
− d1
d2
e
−

∫ d1d3
d2

ds

[ ∫
e
∫ d1d3

d2
ds d3
d2
ds+ C

]}
D1,

where C is a constant of integration.

Proof. Suppose α is a curve with unit speed and β represents its focal curve in E3.

Differentiating the equation (2.2) and using (1.4), we obtain

β′ = (1− d1ϕ1 − d2ϕ2)t+ (ϕ′1 − d3ϕ2)D2 + (d3ϕ1 + ϕ′2)D1. (2.4)

From equation (2.4), the first two components vanish, we get

1− d1ϕ1 − d2ϕ2 = 0, (2.5)

ϕ′1 − d3ϕ2 = 0. (2.6)

From equation (2.5),

ϕ2 =
1− d1ϕ1

d2
.

In (2.6),

ϕ′1 +
d1d3
d2

ϕ1 =
d3
d2
.

By integrating this equation, we find

ϕ1 = e
−

∫ d1d3
d2

ds

[ ∫
e
∫ d1d3

d2
ds d3
d2
ds+ C

]
,

ϕ2 =
1

d2
− d1
d2
e
−

∫ d1d3
d2

ds

[ ∫
e
∫ d1d3

d2
ds d3
d2
ds+ C

]
.

Substituting in the equation (2.2), the result follows.
�
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As an immediate consequence of the above theorem, we have:

Corollary 2.2. Consider a unit speed curve α : I → E3 and its corresponding focal curve β in E3. Then, the
focal curvatures of β are

ϕ1 = e
−

∫ d1d3
d2

ds

[ ∫
e
∫ d1d3

d2
ds d3
d2
ds+ C

]
,

ϕ2 =
1

d2
− d1
d2
e
−

∫ d1d3
d2

ds

[ ∫
e
∫ d1d3

d2
ds d3
d2
ds+ C

]
.

Based on Theorem 2.1, we can state the following corollary:

Corollary 2.3. Consider a unit speed curve α : I → E3 and its focal curve β in E3. If d1, d2 and d3 are
constants, then the focal curvatures of β are

ϕ1 =
1

d1
+ Ce

− d1d3
d2

s
,

ϕ2 =
1

d2
− d1
d2

(
1

d1
+ Ce

− d1d3
d2

s

)
.

3 Conclusion

The study of focal curves in the Flc-frame provides a new view of these curves, revealing new characteristics
that were not evident in other frames. In this study we characterise focal curves in euclidean space according
Flc-frame and then deduce relationships between the curvature of a curve and its focal curvatures.
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